如圖,AB是⊙O的直徑,BC交⊙O于點D,DE⊥AC于點E,要使DE是⊙O的切線,還需補充一個條件,則補充的條件不正確的是( 。
A.DE=DOB.AB=ACC.CD=DBD.ACOD

當AB=AC時,如圖:連接AD,
∵AB是⊙O的直徑,
∴AD⊥BC,
∴CD=BD,
∵AO=BO,
∴OD是△ABC的中位線,
∴ODAC,
∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切線.
所以B正確.
當CD=BD時,AO=BO,∴OD是△ABC的中位線,
∴ODAC
∵DE⊥AC
∴DE⊥OD
∴DE是⊙O的切線.
所以C正確.
當ACOD時,∵DE⊥AC,∴DE⊥OD.
∴DE是⊙O的切線.
所以D正確.
故選A.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O1和⊙O2外切于點P,內公切線PC與外公切線AB(A、B分別是⊙O1和⊙O2上的切點)相交于點C,已知⊙O1和⊙O2的半徑分別為3和4,則PC的長等于______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,已知∠ABC=90°,以AB為直徑作⊙O交AC于D,E為BC的中點,連接DE,求證:DE為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直尺、三角尺都和圓O相切,AB=8cm.求圓O的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,△ABC中,AB=AC=5,BC=8,以A為圓心,3cm長為半徑的圓與直線BC的關系是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,O為正方形ABCD對角線AC上一點,以O為圓心,OA長為半徑的⊙0與BC相切于點M,與AB、AD分別相交于點E、F.
(1)求證:CD與⊙0相切;
(2)若⊙0的半徑為
2
,求正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

⊙O的半徑為6,⊙O的一條弦長4
5
,以4為半徑的同心圓與此弦的位置關系是( 。
A.相離B.相交C.相切D.不確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB為弦,直線BC是⊙O的切線,OC交AB于P,PC=BC.
(1)求證:OA⊥OC;
(2)已知⊙O的半徑為3,CP=4,求弦AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB.
(1)求證:AC是△BDE的外接圓的切線;
(2)若AD=2
6
,AE=6
2
,求BD的長.

查看答案和解析>>

同步練習冊答案