如圖,過ABCD對角線的交點O作兩條互相垂直的直線EF、CH,分別與ABCD的四條邊交于E、F和G、H,求證:EGFH為菱形.

答案:
解析:

  證法一:∵ABCD為平行四邊形,

  ∴AD∥BC,AO=CO.

  又∵∠HAO=∠GCO,∠AHO=∠CGO,

  ∴△AHO≌△CGO,∴OH=OG.

  同理,OE=OF,∴EGFH是平行四邊形,

  又∵EF⊥GH,

  ∴EGFH為菱形.

  證法二:∵O是ABCD的對稱中心,GH經(jīng)過O點與BC交于G,與AD交于H

  ∴G、H是以點O為對稱中心的對稱點,

  ∴OG=OH

  同理OE=OF,∴EGFH是平行四邊形.

  又∵EF⊥GH,∴EGFH是菱形.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們學(xué)過圓內(nèi)接三角形,同樣,四個頂點在圓上的四邊形是圓內(nèi)接四邊形,下面我們來研究它的性質(zhì).
(I)如圖(1),連接AO、OC,則有∠B=
1
2
∠1
,∠D=
1
2
∠2
.∵∠1+∠2=360°∴∠B+∠D=
1
2
×360°=180°
,同理∠BAD+∠BCD=180°,即圓內(nèi)接四邊形對角(相對的兩個角)互補.
(II)在圖(2)中,∠ECD是圓內(nèi)接四邊形ABCD的一個外角,請你探究外角∠DCE與它的相鄰內(nèi)角的對角(簡稱內(nèi)對角)∠A的關(guān)系,并證明∠DCE與∠A的關(guān)系.
(III)應(yīng)用:請你應(yīng)用上述性質(zhì)解答下題:如圖(3)已知ABCD是圓內(nèi)接四邊形,F(xiàn)、E分別為BD、AD延長線上的點,如果DE平分
∠FDC,求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,EF過平行四邊形ABCD的對角形的交點O,交AD于點E,交BC于點F,已知AB=5,BC=6,OE=2,那么四邊形EFCD的周長是
15
15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,EF過平行四邊形ABCD的對角形的交點O,交AD于點E,交BC于點F,已知AB=5,BC=6,OE=2,那么四邊形EFCD的周長是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我們學(xué)過圓內(nèi)接三角形,同樣,四個頂點在圓上的四邊形是圓內(nèi)接四邊形,下面我們來研究它的性質(zhì).
(I)如圖(1),連接AO、OC,則有數(shù)學(xué)公式,數(shù)學(xué)公式.∵∠1+∠2=360°∴數(shù)學(xué)公式,同理∠BAD+∠BCD=180°,即圓內(nèi)接四邊形對角(相對的兩個角)互補.
(II)在圖(2)中,∠ECD是圓內(nèi)接四邊形ABCD的一個外角,請你探究外角∠DCE與它的相鄰內(nèi)角的對角(簡稱內(nèi)對角)∠A的關(guān)系,并證明∠DCE與∠A的關(guān)系.
(III)應(yīng)用:請你應(yīng)用上述性質(zhì)解答下題:如圖(3)已知ABCD是圓內(nèi)接四邊形,F(xiàn)、E分別為BD、AD延長線上的點,如果DE平分
∠FDC,求證:AB=AC.

查看答案和解析>>

同步練習(xí)冊答案