如圖,AB、AC為⊙O的弦,連接CO、BO并延長分別交弦AB、AC于點E、F,∠B=∠C.
求證:CE=BF.

【答案】分析:因為OB,OC是⊙O的半徑,所以O(shè)B=OC,又因為∠B=∠C,∠BOE=∠COF,易證△EOB≌△FOC,則可求證CE=BF.
解答:證明:∵OB,OC是⊙O的半徑,
∴OB=OC.
又∵∠B=∠C,∠BOE=∠COF,
∴△EOB≌△FOC(ASA).
∴OE=OF.
∵CE=OC+OE,BF=OB+OF,
∴CE=BF.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,AB、AC為⊙O的弦,連接CO、BO并延長分別交弦AB、AC于點E、F,∠B=∠C.
求證:CE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

30、如圖,AB、AC為⊙O的兩條弦,延長CA到D,使AD=AB,如果∠ADB=35°,則∠BOC=
140
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB、AC為⊙O的切線,B、C是切點,延長OB到D,使BD=OB,連接AD,如果∠DAC=78°,那么∠ADO等于(  )
A、70°B、64°C、62°D、51°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB、AC為⊙O的弦,連接CO、BO并延長分別交弦AB、AC于點E、F,∠B=∠C.求證:CE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年江蘇省鹽城市九年級上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

如圖,AB、AC為⊙O的弦,連接CO、BO并延長分別交弦AB、AC于點E、F,∠B=∠C。問:線段CE和線段BF相等嗎?請說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案