【題目】解下列方程

13x6)=12 ;

2x=2

(3);

(4)

【答案】110;(21;(3;(4

【解析】

1)去括號,移項(xiàng)然后合并同類項(xiàng)再系數(shù)化為1計(jì)算即可;

2)先去分母,然后去括號,移項(xiàng)然后合并同類項(xiàng)再系數(shù)化為1計(jì)算即可;

3)去括號,移項(xiàng)然后合并同類項(xiàng)再系數(shù)化為1計(jì)算即可;

4)先去分母,然后去括號,移項(xiàng)然后合并同類項(xiàng)再系數(shù)化為1計(jì)算即可.

解:(1)去括號得:3x-18=12
移項(xiàng)合并得:3x=30,
解得:x=10;
2)去分母得:

去括號得:6x-3x+3=12-2x-4,
移項(xiàng)合并得:5x=5,
解得:x=1;

3)去括號得:5-4x+2=x
移項(xiàng)合并得:5x=7,
解得:x=;

4)去分母得

去括號得:3x-3=6-8x-2
移項(xiàng)合并得:11x=7,
解得:x=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(背景知識)

數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為、,則兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為.

(問題情境)

如圖,數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為8,點(diǎn)從點(diǎn)出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運(yùn)動,同時點(diǎn)從點(diǎn)出發(fā),以每秒2個單位長度的速度向左勻速運(yùn)動,設(shè)運(yùn)動時間為秒(.

(綜合運(yùn)用)

1)填空:

、兩點(diǎn)之間的距離________,線段的中點(diǎn)表示的數(shù)為__________.

②用含的代數(shù)式表示:秒后,點(diǎn)表示的數(shù)為____________;點(diǎn)表示的數(shù)為___________.

③當(dāng)_________時,兩點(diǎn)相遇,相遇點(diǎn)所表示的數(shù)為__________.

2)當(dāng)為何值時,.

3)若點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),點(diǎn)在運(yùn)動過程中,線段的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市城市居民用電收費(fèi)方式有以下兩種:

(甲)普通電價:全天0.53元/度;

(乙)峰谷電價:峰時(早8:00~晚21:00)0.56元/度;谷時(晚21:00~早8:00)0.36元/度.

估計(jì)小明家下月總用電量為200度,

⑴若其中峰時電量為50度,則小明家按照哪種方式付電費(fèi)比較合適?能省多少元?

⑵請你幫小明計(jì)算,峰時電量為多少度時,兩種方式所付的電費(fèi)相等?

⑶到下月付費(fèi)時, 小明發(fā)現(xiàn)那月總用電量為200度,用峰谷電價付費(fèi)方式比普通電價付費(fèi)方式省了14元,求那月的峰時電量為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(1)班同學(xué)到野外上數(shù)學(xué)活動課,為測量池塘兩端AB的距離,設(shè)計(jì)了如下方案:

(Ⅰ)如圖5-1,先在平地上取一個可直接到達(dá)A、B的點(diǎn)C,連接ACBC,并分別延長ACD,BCE,使DC=AC,EC=BC,最后測出DE的距離即為AB的長;

(Ⅱ)如圖5-2,先過B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn)使BC=CD,接著過DBD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離.

閱讀后1回答下列問題:

1)方案(Ⅰ)是否可行?說明理由.

2)方案(Ⅱ)是否可行?說明理由.

3)方案(Ⅱ)中作BFABEDBF的目的是 ;若僅滿足∠ABD=BDE90°, 方案(Ⅱ)是否成立? .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中 過點(diǎn)A作AEDC,垂足為E,連接BE,F(xiàn)為BE上一點(diǎn),且AFE=D.

(1)求證:ABF∽△BEC;

(2)若AD=5,AB=8,sinD=,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下表,從左到右在每個小格子中都填入一個整數(shù),使得其中任意三個相鄰格子中所填整數(shù)之和都相等,則第2019個格子中的數(shù)為_________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(﹣5,0)、(﹣2,0).點(diǎn)P在拋物線y=﹣2x2+4x+8上,設(shè)點(diǎn)P的橫坐標(biāo)為m.當(dāng)0≤m≤3時,△PAB的面積S的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班為滿足同學(xué)們課外活動的需求,要求購排球和足球若干個.已知足球的單價比排球的單價多30元,用500元購得的排球數(shù)量與用800元購得的足球數(shù)量相等.

(1)排球和足球的單價各是多少元?

(2)若恰好用去1200元,有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1)(﹣+(﹣+(﹣+

2

3

4)(﹣24)×(

5

6

7

8

查看答案和解析>>

同步練習(xí)冊答案