【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E,F(xiàn),則EF長(zhǎng)為 .
【答案】6 或2
【解析】解:如圖1,當(dāng)點(diǎn)P在CD上時(shí), ∵PD=3,CD=AB=9,
∴CP=6,∵EF垂直平分PB,
∴四邊形PFBE是正方形,EF過(guò)點(diǎn)C,
∴EF=6 ,
如圖2,當(dāng)點(diǎn)P在AD上時(shí),
過(guò)E作EQ⊥AB于Q,
∵PD=3,AD=6,
∴AP=3,
∴PB= = =3 ,
∵EF垂直平分PB,
∴∠1=∠2,
∵∠A=∠EQF,
∴△ABP∽△EFQ,
∴ ,
∴ ,
∴EF=2 ,
綜上所述:EF長(zhǎng)為6 或2 .
故答案為:6 或2 .
如圖1,當(dāng)點(diǎn)P在CD上時(shí),由折疊的性質(zhì)得到四邊形PFBE是正方形,EF過(guò)點(diǎn)C,根據(jù)勾股定理即可得到結(jié)果;如圖2當(dāng)點(diǎn)P在AD上時(shí),過(guò)E作EQ⊥AB于Q,根據(jù)勾股定理得到PB= = =3 ,推出△ABP∽△EFQ,列比例式即可得到結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中.
(1)以圖中的點(diǎn)O為位似中心,在網(wǎng)格中畫(huà)出△ABC的位似圖形△A1B1C1 , 使△A1B1C1與△ABC的位似比為2:1;
(2)若△A1B1C1的面積為S,則△ABC的面積是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角△ABC中,邊BC長(zhǎng)為12,高AD長(zhǎng)為8.
(1)如圖,矩形EFGH的邊GH在BC邊上,其余兩個(gè)頂點(diǎn)E、F分別在AB、AC邊上,EF交AD于點(diǎn)K.
①求 的值;
②設(shè)EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關(guān)系式,并求S的最大值;
(2)若AB=AC,正方形PQMN的兩個(gè)頂點(diǎn)在△ABC一邊上,另兩個(gè)頂點(diǎn)分別在△ABC的另兩邊上,直接寫(xiě)出正方形PQMN的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)H在平行四邊形ABCD的邊DC延長(zhǎng)線上,連結(jié)AH分別交BC、BD于點(diǎn)E,F(xiàn).求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y=﹣ ,下列結(jié)論不正確的是( )
A.圖象必經(jīng)過(guò)點(diǎn)(﹣1,2)
B.y隨x的增大而增大
C.圖象在第二、四象限內(nèi)
D.若x>1,則y>﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB邊上一點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),DE的延長(zhǎng)線交⊙O于點(diǎn)G,DF⊥DG,且交BC于點(diǎn)F.
(1)求證:AE=BF;
(2)連接GB,EF,求證:GB∥EF;
(3)若AE=1,EB=2,求DG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E,F(xiàn),G,H分別是矩形ABCD各邊的中點(diǎn),AB=6,BC=8,則四邊形EFGH的面積是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com