【題目】已知銳角△ABC中,邊BC長為12,高AD長為8.
(1)如圖,矩形EFGH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K.
①求 的值;
②設(shè)EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關(guān)系式,并求S的最大值;
(2)若AB=AC,正方形PQMN的兩個頂點在△ABC一邊上,另兩個頂點分別在△ABC的另兩邊上,直接寫出正方形PQMN的邊長.

【答案】
(1)解:①∵EF∥BC,

= ,

的值是

②∵EH=x,

∴KD=EH=x,AK=8﹣x,

= ,

∴EF=

∴S=EHEF= x(8﹣x)=﹣ +24,

∴當(dāng)x=4時,S的最大值是24.


(2)解:設(shè)正方形的邊長為a,

① 當(dāng)正方形PQMN的兩個頂點在BC邊上時,

,

解得a=

②當(dāng)正方形PQMN的兩個頂點在AB或AC邊上時,

∵AB=AC,AD⊥BC,

∴BD=CD=12÷2=6,

∴AB=AC=

∴AB或AC邊上的高等于:

ADBC÷AB

=8×12÷10

=

,

解得a=

綜上,可得

正方形PQMN的邊長是


【解析】(1)①根據(jù)EF∥BC,可得 ,所以 ,據(jù)此求出 的值是多少即可.②首先根據(jù)EH=x,求出AK=8﹣x,再根據(jù) = ,求出EF的值;然后根據(jù)矩形的面積公式,求出S與x的函數(shù)關(guān)系式,利用配方法,求出S的最大值是多少即可.(2)根據(jù)題意,設(shè)正方形的邊長為a,分兩種情況:①當(dāng)正方形PQMN的兩個頂點在BC邊上時;②當(dāng)正方形PQMN的兩個頂點在AB或AC邊上時;分類討論,求出正方形PQMN的邊長各是多少即可.
【考點精析】通過靈活運用二次函數(shù)的最值和矩形的性質(zhì),掌握如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a;矩形的四個角都是直角,矩形的對角線相等即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BA=BC=20cm,AC=30cm,點P從A出發(fā),沿AB以4cm/s的速度向點B運動;同時點Q從C點出發(fā),沿CA以3cm/s的速度向A點運動.設(shè)運動時間為x(s).
(1)當(dāng)x為何值時,PQ∥BC;
(2)當(dāng)△APQ與△CQB相似時,AP的長為;
(3)當(dāng)SBCQ:SABC=1:3,求SAPQ:SABQ的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:|﹣2|+2sin30°﹣(﹣ 2+(tan45°)1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l與x軸相交于點M(3,0),與y軸相交于點N(0,﹣1),反比例函數(shù)y= (x>0)的圖象經(jīng)過線段MN的中點A.
(1)求直線l和反比例函數(shù)的解析式;
(2)在函數(shù)y= (x>0)的圖象上取不同于點A的一點B,作BC⊥x軸于點C,連接OB交直線l于點P,若△ONP的面積是△OBC的面積的3倍,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=8,動點P從點A出發(fā),按A→B→C的方向在AB和BC上移動,記PA=x,點D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的切線,切點為B,連接AO,AO與⊙O交于點C,BD為⊙O的直徑,連接CD,若∠A=30°,⊙O的半徑為2,則圖中陰影部分的面積為(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于A(﹣4,0)、B(2,0)兩點,與y軸交于點C,連接AC,BC.

(1)求該拋物線的解析式;
(2)若點P是x軸上的一動點,且位于AB之間,過點P作PE∥AC,交BC于E,連接CP,設(shè)P點橫坐標(biāo)為x,△PCE的面積為S,請求出S關(guān)于x的解析式,并求△PCE面積的最大值;
(3)點為D(﹣2,0),若點M是線段AC上一動點,是否存在M點,能使△OMD是等腰三角形?若存在,請直接寫出M點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點P,且DP=3.將矩形紙片折疊,使點B與點P重合,折痕所在直線交矩形兩邊于點E,F(xiàn),則EF長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=2x+b(b為常數(shù))的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的折線是函數(shù)y=|2x+b|(b為常數(shù))的圖象.若該圖象在直線y=2下方的點的橫坐標(biāo)x滿足0<x<3,則b的取值范圍為

查看答案和解析>>

同步練習(xí)冊答案