【題目】已知矩形ABCD的對(duì)角線相交于點(diǎn)O,M、N分別是OD、OC上異于O、C、D的點(diǎn).
(1)請(qǐng)你在下列條件①DM=CN,②OM=ON,③MN是△OCD的中位線,④MN∥AB中任選一個(gè)添加條件(或添加一個(gè)你認(rèn)為更滿意的其他條件),使四邊形ABNM為等腰梯形,你添加的條件是 .
(2)添加條件后,請(qǐng)證明四邊形ABNM是等腰梯形.
【答案】
(1)①DM=CN
(2)證明:∵AD=BC,∠ADM=∠BCN,DM=CN
∴△AMD≌△BCN,
∴AM=BN,由OD=OC知OM=ON,
∴
∴MN∥CD∥AB,且MN≠AB
∴四邊形ABNM是等腰梯形.
【解析】(1)從4個(gè)條件中任選一個(gè)即可,可以添加的條件為①.(2)先根據(jù)SAS證明△AMD≌△BCN,所以可得AM=BN,有矩形的對(duì)角線相等且平分,可得OD=OC即OM=ON,從而知 ,根據(jù)平行線分線段成比例,所以MN∥CD∥AB,且MN≠AB,即四邊形ABNM是等腰梯形.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識(shí),掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等,以及對(duì)等腰梯形的判定的理解,了解兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對(duì)角線相等的梯形是等腰梯形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=﹣x2+2x+3的頂點(diǎn)為P,與x軸的兩個(gè)交點(diǎn)為A,B,那么△ABP的面積等于( )
A.16
B.8
C.6
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中學(xué)生騎電動(dòng)車上學(xué)的現(xiàn)象越來(lái)越受到社會(huì)的關(guān)注.為此某媒體記者小李隨機(jī)調(diào)查了城區(qū)若干名中學(xué)生家長(zhǎng)對(duì)這種現(xiàn)象的態(tài)度(態(tài)度分為:A:無(wú)所謂;B:反對(duì);C:贊成)并將調(diào)査結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整)請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)査中.共調(diào)査了名中學(xué)生家長(zhǎng);
(2)將圖①補(bǔ)充完整;
(3)根據(jù)抽樣調(diào)查結(jié)果.請(qǐng)你估計(jì)我市城區(qū)80000名中學(xué)生家長(zhǎng)中有多少名家長(zhǎng)持反對(duì)態(tài)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校計(jì)劃組織學(xué)生到市影劇院觀看大型感恩歌舞劇,為了解學(xué)生如何去影劇院的問(wèn)題,學(xué)校隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果制成了表格、條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).
(1)此次共調(diào)查了多少位學(xué)生?
(2)將表格填充完整;
步行 | 騎自行車 | 坐公共汽車 | 其他 |
50 |
(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用高為6cm,底面直徑為4cm的圓柱A的側(cè)面積展開圖,再圍成不同于A的另一個(gè)圓柱B,則圓柱B的體積為( )
A.24πcm3
B.36πcm3
C.36cm3
D.40cm3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若ab>0,則函數(shù)y=ax+b與y= (a≠0)在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,邊長(zhǎng)為2的正方形ABCD中,E是BA延長(zhǎng)線上一點(diǎn),且AE=AB,點(diǎn)P從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度沿D→CB向終點(diǎn)B運(yùn)動(dòng),直線EP交AD于點(diǎn)F,過(guò)點(diǎn)F作直線FG⊥DE于點(diǎn)G,交AB于點(diǎn)R.
(1)求證:AF=AR;
(2)設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,求當(dāng)選t為何值時(shí),四邊形PRBC是矩形?
(3)如圖2,連接PB,請(qǐng)直線寫出使△PRB是等腰三角形時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=12,E為AC邊的中點(diǎn),線段BE的垂直平分線交邊BC于點(diǎn)D.設(shè)BD=x,tan∠ACB=y,則( )
A.x﹣y2=3
B.2x﹣y2=9
C.3x﹣y2=15
D.4x﹣y2=21
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是BC邊上的中線,以AD為直徑作⊙O,連接BO并延長(zhǎng)至點(diǎn)E,使得OE=OB,交⊙O于點(diǎn)F,連接AE,CE.
(1)求證:AE是⊙O的切線;
(2)求證:四邊形ADCE是矩形;
(3)若BD= AD=4,求陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com