如圖,已知邊長(zhǎng)為4的正方形ABCD,E是BC邊上一動(dòng)點(diǎn)(與B、C不重合),連結(jié)AE,作EF⊥AE交∠BCD的外角平分線于F,設(shè)BE=x,△ECF的面積為y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(   )

A.          B.
C.        D.

B.

解析試題分析:如圖,過(guò)點(diǎn)E作EH⊥BC于點(diǎn)H,
∵四邊形ABCD是正方形,∴∠DCH=90°.
∵CE平分∠DCH,∴∠ECH=∠DCH=45°.
∵∠H=90°,∴∠ECH=∠CEH=45°.∴EH=CH.
∵四邊形ABCD是正方形,AP⊥EP,∴∠B=∠H=∠APE=90°.
∴∠BAP+∠APB=90°,∠APB+∠EPH=90°.∴∠BAP=∠EPH.
∵∠B=∠H=90°,∴△BAP∽△HPE. ∴,即.∴EH=x.
,它的圖象是拋物線的一部分.
故選B.

考點(diǎn):1.單動(dòng)點(diǎn)問(wèn)題;2.由實(shí)際問(wèn)題列函數(shù)關(guān)系式;3.正方形的性質(zhì);4.相似三角形的判定和性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商店欲購(gòu)進(jìn)甲、乙兩種商品,已知甲的進(jìn)價(jià)是乙的進(jìn)價(jià)的一半,進(jìn)3件甲商品和1件乙商品恰好用200元.甲、乙兩種商品的售價(jià)每件分別為80元、130元,該商店決定用不少于6710元且不超過(guò)6810元購(gòu)進(jìn)這兩種商品共100件.
(1)求這兩種商品的進(jìn)價(jià).
(2)該商店有幾種進(jìn)貨方案?哪種進(jìn)貨方案可獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)(-1,0)、(0,3),下列結(jié)論中錯(cuò)誤的是(  )

A.a(chǎn)bc<0 B.9a+3b+c=0 C.a(chǎn)-b="-3"  D. 4ac﹣b2<0 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

函數(shù)在同一直角坐標(biāo)系中的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

若二次函數(shù)y=x2﹣2x+c的圖象與y軸的交點(diǎn)為(0,﹣3),則此二次函數(shù)有(     )

A.最小值為-2 B.最小值為-3 C.最小值為-4 D.最大值為-4 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

對(duì)于二次函數(shù)y=2(x+1)(x-3),下列說(shuō)法正確的是( )

A.圖象的開(kāi)口向下
B.當(dāng)x>1時(shí),y隨x的增大而減小
C.當(dāng)x<1時(shí),y隨x的增大而減小
D.圖象的對(duì)稱軸是直線x=-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)(1,0),對(duì)稱軸為x=1,則下列結(jié)論中正確的是(  )

A.
B.當(dāng)時(shí),y隨x的增大而增大
C.
D.是一元二次方程的一個(gè)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

將函數(shù)變形為的形式,正確的是( 。

A. B. 
C. D. 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

已知二次函數(shù)y=a(x+1)2-b(a≠0)有最小值,則a,b的大小關(guān)系為 (  )

A.a(chǎn)>b B.a(chǎn)<b
C.a(chǎn)=b D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案