如圖,你能把這個(gè)等邊三角形分成兩個(gè)全等三角形嗎?你能把它分成三個(gè)、四個(gè)全等三角形嗎?試畫(huà)出你的方案。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•慶元縣模擬)定義:若某個(gè)圖形可分割為若干個(gè)都與他相似的圖形,則稱(chēng)這個(gè)圖形是自相似圖形.
探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個(gè)與它自己相似的小直角三角形嗎?若能,請(qǐng)?jiān)趫D甲中畫(huà)出分割線,并說(shuō)明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三分割為四個(gè)都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱(chēng)為1階分割(如圖1);把1階分割得出的4個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱(chēng)為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個(gè)小三角形都是全等三角形(n為正整數(shù)),設(shè)此時(shí)小三角形的面積為Sn
①若△DEF的面積為1000,當(dāng)n為何值時(shí),3<Sn<4?
(請(qǐng)用計(jì)算器進(jìn)行探索,要求至少寫(xiě)出二次的嘗試估算過(guò)程)
②當(dāng)n>1時(shí),請(qǐng)寫(xiě)出一個(gè)反映Sn-1,Sn,Sn+1之間關(guān)系的等式(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

等腰三角形是我們熟悉的圖形之一,下面介紹一種等分等邊三角形面積的方法:如圖(1),在△ABC中,AB=AC,把底邊BC分成m等份,連接頂點(diǎn)A和底邊BC各等分點(diǎn)的線段,即可把這個(gè)三角形的面積m等分.
問(wèn)題的提出:任意給定一個(gè)正n邊形,你能把它的面積m等分嗎?
探究與發(fā)現(xiàn):為了解決這個(gè)問(wèn)題,我們先從簡(jiǎn)單問(wèn)題入手:怎樣從正三角形的中一心(正多邊形的各對(duì)稱(chēng)軸的交點(diǎn),又稱(chēng)為正多邊形的中心)引線段,才能將這個(gè)正三角形的面積m等分?
如果要把正三角形的面積四等分,我們可以先連接正三角形的中心和各頂點(diǎn)(如圖(2),這些線段將這個(gè)正三角形分成了三個(gè)全等的等腰三角形);再把所得的每個(gè)等腰三角形的底邊四等分,連接中心和各邊等分點(diǎn)(如圖(3),這些線段把這個(gè)正三角形分成了12個(gè)面積相等的小三角形);最后,依次把相鄰的三個(gè)小三角形拼合在一起(如圖(4)).這樣就把正三角形的面積四等分.

(1)實(shí)驗(yàn)與驗(yàn)證:依照上述方法,利用刻度尺,在圖(5)中畫(huà)出一種將正三角形的面積五等分的簡(jiǎn)單示意圖;
(2)猜想與證明:怎樣從正三角形的中心引線段,才能將這個(gè)正三角形的面積m等分?敘述你的分法并說(shuō)明理由;
(3)拓展與延伸:怎樣從正方形的中心引線段,才能將這個(gè)正方形的面積m等分?(敘述方法即可,不需說(shuō)明理由)
(4)向題解決:怎樣從正n邊形的中心引線段,才能將這個(gè)正n邊形的面積m等分?(敘述分法即可,不需說(shuō)明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4個(gè)全等的直角三角形的直角邊分別為a、b,斜邊為c.現(xiàn)把它們適當(dāng)拼合,可以得到如圖的圖形,利用這個(gè)圖形可以驗(yàn)證勾股定理,你能說(shuō)明其中的道理嗎?請(qǐng)?jiān)囈辉嚕?/div>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

教材第九章中探索乘法公式時(shí),設(shè)置由圖形面積的不同表示方法驗(yàn)證了乘法公式.我國(guó)著名的數(shù)學(xué)家趙爽,早在公元3世紀(jì),就把一個(gè)矩形分成四個(gè)全等的直角三角形,用四個(gè)全等的直角三角形拼成了一個(gè)大的正方形(如圖1),這個(gè)圖形稱(chēng)為趙爽弦圖,驗(yàn)證了一個(gè)非常重要的結(jié)論:在直角三角形中兩直角邊a、b與斜邊c滿足關(guān)系式a2+b2=c2,稱(chēng)為勾股定理.

(1)愛(ài)動(dòng)腦筋的小明把這四個(gè)全等的直角三角形拼成了另一個(gè)大的正方形(如圖2),也能驗(yàn)證這個(gè)結(jié)論,請(qǐng)你幫助小明完成驗(yàn)證的過(guò)程.
(2)小明又把這四個(gè)全等的直角三角形拼成了一個(gè)梯形(如圖3),利用上面探究所得結(jié)論,求當(dāng)a=3,b=4時(shí)梯形ABCD的周長(zhǎng).(3)如圖4,在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.請(qǐng)?jiān)趫D中畫(huà)出△ABC的高BD,利用上面的結(jié)論,求高BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案