【題目】如圖,拋物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結論:①無論x取何值,y2的值總是正數;②a=;③當x=0時,y2﹣y1=6;④AB+AC=10;其中正確結論的個數是( )
A.①②④B.①③④C.②③④D.①②③④
【答案】A
【解析】
根據與y2=(x﹣3)2+1的圖象在x軸上方即可得出y2的取值范圍;把A(1,3)代入拋物線y1=a(x+2)2﹣3即可得出a的值;由拋物線與y軸的交點求出y2﹣y1的值;根據兩函數的解析式求出A、B、C的坐標,計算出AB與AC的長,即可得到AB+AC的值.
解:①∵拋物線y2=(x﹣3)2+1開口向上,頂點坐標在x軸的上方,
∴無論x取何值,y2的值總是正數,故本結論正確;
②把A(1,3)代入y1=a(x+2)2﹣3得,3=a(1+2)2﹣3,
解得a=,故本結論正確;
③∵y1=(x+2)2﹣3,y2=(x﹣3)2+1,
∴當x=0時,y1=(0+2)2﹣3=﹣,y2=(0﹣3)2+1=,
∴y2﹣y1=﹣(﹣)=≠6,故本結論錯誤;
④∵物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點A(1,3),
∴y1的對稱軸為x=﹣2,y2的對稱軸為x=3,
∴B(﹣5,3),C(5,3),
∴AB=6,AC=4,
∴AB+AC=10,故結論正確.
故選:A.
科目:初中數學 來源: 題型:
【題目】某校的教室A位于工地O的正西方向,且OA=200m,一臺拖拉機從O點出發(fā),以每秒5m的速度沿北偏西53°的方向行駛,設拖拉機的噪聲污染半徑為130m,則教室A是否在拖拉機的噪聲污染范圍內?若不在,請說明理由;若在,求出教室A受噪聲污染的時間有幾秒.(參考數據:sin53°≈0.80,sin37°≈0.60,tan37°≈0.75)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解學生對中國民族樂器的喜愛情況,隨機抽取了本校的部分學生進行調查(每名學生選擇并且只能選擇一種喜愛樂器),現將收集到的數據繪制如下的兩幅不完整的統(tǒng)計圖.
(1)這次共抽取 學生進行調查,扇形統(tǒng)計圖中的 .
(2)請補全統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中“揚琴”所對扇形的圓心角是 度;
(4)若該校有3000名學生,請你估計該校喜愛“二胡”的學生約有 名.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,PB為⊙O的切線,B為切點,直線PO交⊙于點E、F,過點B作PO的垂線BA,垂足為點D,交⊙O于點A,延長AO與⊙O交于點C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)試探究線段EF、OD、OP之間的等量關系,并加以證明;
(3)若BC=6,tan∠F=,求cos∠ACB的值和線段PE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請僅用無刻度直尺完成下列畫圖,不寫畫法,保留畫圖痕跡.
(1)如圖1,在的正方形網格中,每個小正方形的邊長為1,小正方形的頂點叫做格點.的頂點在格點上,過點畫一條直線平分的面積;
(2)如圖2,點在正方形的內部,且,過點畫一條射線平分;
(3)如圖3,點、、均在上,且,在優(yōu)弧上畫、兩點,使.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC⊥x軸,垂足為D,邊AB所在直線分別交x軸、y軸于點E、F,且AF=EF,反比例函數y=的圖象經過A、C兩點,已知點A(2,n).
(1)求AB所在直線對應的函數表達式;(2)求點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x的方程(x﹣3)(x﹣5)=m(m>0)有兩個實數根α,β(α<β),則下列選項正確的是( 。
A. 3<α<β<5 B. 3<α<5<β C. α<2<β<5 D. α<3且β>5
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com