【題目】如圖,從一個(gè)半徑為1的圓形鐵皮中剪下一個(gè)圓心角為90°的扇形BAC.
(1)求這個(gè)扇形的面積;
(2)若將扇形BAC圍成一個(gè)圓錐的側(cè)面,這個(gè)圓錐的底面直徑是多少?能否從最大的余料③中剪出一個(gè)圓做該圓錐的底面?請(qǐng)說(shuō)明理由.
【答案】(1)S扇形=;(2)不能,見(jiàn)解析
【解析】
試題分析:(1)由勾股定理求扇形的半徑,再根據(jù)面積公式求值;
(2)利用底面周長(zhǎng)等于展開(kāi)圖的弧長(zhǎng),可求得直徑的長(zhǎng)度,進(jìn)而比較圓錐的底面半徑和圖中EF的大小關(guān)系即可.
解:(1)∵∠A為直角,
∴直徑BC=2,
∴根據(jù)勾股定理得:AB2+AC2=BC2,
∵AB=AC,
∴AB2+AB2=22,
∴扇形半徑為AB=;
∴S扇形=;
(2)設(shè)圍成圓錐的底面半徑為r,則2πr=,解得;
延長(zhǎng)AO分別交弧BC和⊙O于E、F,而EF=2<;
∴不能從最大的余料③中剪出一個(gè)圓做該圓錐的底面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝專賣店老板對(duì)第一季度男、女服裝的銷售收入進(jìn)行統(tǒng)計(jì),并繪制了扇形統(tǒng)計(jì)圖(如圖)。由于三月份展開(kāi)促銷活動(dòng),男女服裝的銷售收入分別比二月份增長(zhǎng)了40%,64%,已知第一季度男女服裝的銷售總收入為20萬(wàn)元。
(1)二月份銷售收入為_(kāi)______萬(wàn)元。三月份銷售收入為_(kāi)_____萬(wàn)元。
(2)二月份男女服裝的銷售收入分別是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為4cm的等邊三角形,AD為BC邊上的高,點(diǎn)P沿BC向終點(diǎn)C運(yùn)動(dòng),速度為1cm/s,點(diǎn)Q沿CA、AB向終點(diǎn)B運(yùn)動(dòng),速度為2cm/s,若點(diǎn)P、Q兩點(diǎn)同時(shí)出發(fā),設(shè)它們的運(yùn)動(dòng)時(shí)間為x(s).
(l)求x為何值時(shí),PQ⊥AC;x為何值時(shí),PQ⊥AB?
(2)當(dāng)O<x<2時(shí),AD是否能平分△PQD的面積?若能,說(shuō)出理由;
(3)探索以PQ為直徑的圓與AC的位置關(guān)系,請(qǐng)寫(xiě)出相應(yīng)位置關(guān)系的x的取值范圍(不要求寫(xiě)出過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件40元.當(dāng)售價(jià)為每件60元時(shí),每星期可賣出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問(wèn)題:
(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤(rùn)為y元,請(qǐng)寫(xiě)出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)若降價(jià)的最小單位為1元,則當(dāng)降價(jià)多少元時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
(1)求出每天的銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求出銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)如果該企業(yè)要使每天的銷售利潤(rùn)不低于4000元,且每天的總成本不超過(guò)7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是的內(nèi)接矩形,如果的高線長(zhǎng),底邊長(zhǎng),設(shè),,
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)為何值時(shí), 四邊形的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(-1,0)、B(3,0)、C(0,3)三點(diǎn)。
(1)求拋物線的解析式。
(2)點(diǎn)M是線段BC上的點(diǎn)(不與B,C重合),過(guò)M作MN∥y軸交拋物線于N若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用m的代數(shù)式表示MN的長(zhǎng)。
(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,PD切⊙O于點(diǎn)C,BD⊥PD,垂足為D,連接BC。
求證:(1)BC平分∠PBD;
(2)BC2=AB·BD。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】托車生產(chǎn)是我市的支柱產(chǎn)業(yè)之一,不少品牌的摩托車暢銷國(guó)內(nèi)外,下表是摩托車廠今年1至5月份摩托車銷售量的統(tǒng)計(jì)表:(單位:輛)
月 份 | 1 | 2 | 3 | 4 | 5 |
銷售量(輛) | 1700 | 2100 | 1250 | 1400 | 1680 |
則這5個(gè)月銷售量的中位數(shù)是 輛。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com