【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(-1,0)、B(3,0)、C(0,3)三點(diǎn)。
(1)求拋物線的解析式。
(2)點(diǎn)M是線段BC上的點(diǎn)(不與B,C重合),過M作MN∥y軸交拋物線于N若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用m的代數(shù)式表示MN的長(zhǎng)。
(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說明理由。
【答案】(1)y=﹣x2+2x+3.(2) ﹣m2+3m(0<m<3).(3) 當(dāng)m=時(shí),△BNC的面積最大,最大值為.
【解析】試題分析:(1)利用待定系數(shù)法求二次函數(shù)的解析式;
(2)先求直線BC的解析式,表示出M、N兩點(diǎn)的坐標(biāo),利用縱坐標(biāo)的差計(jì)算MN的長(zhǎng)即可;
(3)根據(jù)面積公式得:S△BNC=S△CMN+S△MNB=|MN||OB|,OB的長(zhǎng)是定值為3,所以MN的最大值即為面積的最大值,求MN所表示的二次函數(shù)的最值即可.
解:(1) ∵拋物線經(jīng)過點(diǎn)A(1,0),B(3,0),C(0,3)三點(diǎn),
∴設(shè)拋物線的解析式為:y=a(x+1)(x3),
把C(0,3)代入得:3=a(0+1)(03),
a=1,
∴拋物線的解析式:y=-x2+2x+3
(2) 設(shè)直線BC的解析式為:y=kx+b,
把B(3,0),C(0,3)代入得: ,
解得:
,
∴直線BC的解析式為y=-x+3,
∴M(m,-m+3),
又∵MN⊥x軸,
∴N(m,-m2+2m+3),
∴MN=(-m2+2m+3)-(-m+3)=-m2+3m(0<m<3)
(3)S△BNC=S△CMN+S△MNB=|MN|·|OB|,
∴當(dāng)|MN|最大時(shí),△BNC的面積最大,
MN=-m2+3m=-(m-)2+,
所以當(dāng)m=時(shí),△BNC的面積最大為××3=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,李老師設(shè)計(jì)了一個(gè)探究杠桿平衡條件的實(shí)驗(yàn):在一個(gè)自制類似天平的儀器的左邊固定托盤A中放置一個(gè)重物,在右邊活動(dòng)托盤B(可左右移動(dòng))中放置一定質(zhì)量的砝碼,使得儀器左右平衡.改變活動(dòng)托盤B與點(diǎn)O的距離x(cm),觀察活動(dòng)托盤B中砝碼的質(zhì)量y(g)的變化情況.實(shí)驗(yàn)數(shù)據(jù)記錄如下表:
x(cm) | 10 | 15 | 20 | 25 | 30 |
y(g) | 30 | 20 | 15 | 12 | 10 |
(1)猜測(cè)y與x之間的函數(shù)關(guān)系,求出函數(shù)關(guān)系式并加以驗(yàn)證;
(2)當(dāng)砝碼的質(zhì)量為24g時(shí),活動(dòng)托盤B與點(diǎn)O的距離是多少?
(3)將活動(dòng)托盤B往左移動(dòng)時(shí),應(yīng)往活動(dòng)托盤B中添加還是減少砝碼?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是A、B、C三島的平面圖,C島在A島的北偏東50°方向,B島在A島的北偏東80°方向,C島在B島的北偏西50°方向,從B島看A、C兩島的視角∠ABC是多少度?從C島看A、B兩島的視角∠ACB呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從一個(gè)半徑為1的圓形鐵皮中剪下一個(gè)圓心角為90°的扇形BAC.
(1)求這個(gè)扇形的面積;
(2)若將扇形BAC圍成一個(gè)圓錐的側(cè)面,這個(gè)圓錐的底面直徑是多少?能否從最大的余料③中剪出一個(gè)圓做該圓錐的底面?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市出租車收費(fèi)標(biāo)準(zhǔn)是:起步價(jià)10元,可乘3千米;3千米到5千米,每千米1.3元;超過5千米,每千米2.4元。
(1)若某人乘坐了()千米的路程,則他應(yīng)支付的費(fèi)用是多少?
(2)若某人乘坐的路程為6千米,那么他應(yīng)支付的費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文藝團(tuán)體為“希望工程”募捐組織了一場(chǎng)義演,共售出1000張票,籌出票款6920元,且每張成人票8元,學(xué)生票5元.
(1)問成人票與學(xué)生票各售出多少?gòu)垼?/span>
(2)若票價(jià)不變,仍售出1000張票,所得的票款可能是7290元嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)政府提出的由中國(guó)制造向中國(guó)創(chuàng)造轉(zhuǎn)型的號(hào)召,某公司自主設(shè)計(jì)了一款成本為40元的可控溫杯,并投放市場(chǎng)進(jìn)行試銷售,經(jīng)過調(diào)查發(fā)現(xiàn)該產(chǎn)品每天的銷售量y(件)與銷售單價(jià)x(元)滿足一次函數(shù)關(guān)系:y=﹣10x+1200.
(1)求利潤(rùn)S(元)與銷售單價(jià)x(元)之間的關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少時(shí),該公司每天獲取的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(m,3)在第一象限的角平分線上,點(diǎn)Q(2,n)在第四象限角平分線上,則m+n的值為_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com