探究:如圖,在中,,,,在的外部拼接一個合適的三角形,使得拼成的圖形是一個等腰三角形,如圖(1)所示。要求再給出的的四個備用圖中分別畫出四種與示例不同的拼接方法,并在圖中標(biāo)明拼接的直角三角形的三邊長。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底邊DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延長HF交AB于G,求△AHG的面積.
(2)操作:固定△ABC,將直角梯形DEFH以每秒1個單位的速度沿CB方向向右移動,直到點(diǎn)D與點(diǎn)B重合時(shí)停止,設(shè)運(yùn)動的時(shí)間為t秒,運(yùn)動后的直角梯形為DEFH′(如圖).
探究1:在運(yùn)動中,四邊形CDH′H能否為正方形?若能,請求出此時(shí)t的值;若不能,請說明理由.
探究2:在運(yùn)動過程中,△ABC與直角梯形DEFH′重疊部分的面積為y,求y與t的函數(shù)關(guān)系.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.
(1)求∠BAE的度數(shù);
(2)求∠DAE的度數(shù);
(3)探究:小明認(rèn)為如果只知道∠B-∠C=40°,也能得出∠DAE的度數(shù)?你認(rèn)為可以嗎?若能,請你寫出求解過程;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣陽區(qū)一模)九年級數(shù)學(xué)興趣小組近期開展了對運(yùn)動型問題的探究.小明同學(xué)提供了一個這樣的背景:如圖,在?ABCD中,AB=AC=10cm,sin∠ACB=
45
,動點(diǎn)O從A出發(fā)以1cm/s的速度沿AC方向向點(diǎn)C勻速運(yùn)動,同時(shí)線段EF從與線段CB重合的位置出發(fā)以1cm/s的速度沿BA方向向點(diǎn)C勻速運(yùn)動.在運(yùn)動過程中,EF交AC于點(diǎn)G,連接OE、OF.設(shè)運(yùn)動時(shí)間為ts(0<t<10),請你解決以下問題:
(1)當(dāng)t為何值時(shí),點(diǎn)O與點(diǎn)G重合?
(2)當(dāng)點(diǎn)O與點(diǎn)G不重合時(shí),判斷△OEF的形狀,并說明理由.             
(3)當(dāng)0<t<5時(shí),
    ①在上述運(yùn)動過程中,五邊形BCEOF的面積是否為定值?如果是,求出五邊形BCEOF的面積;如果不是,請說明理由.
    ②△EOG的面積是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解決下面問題:
如圖,在△ABC中,∠A是銳角,點(diǎn)D,E分別在AB,AC上,且∠DCB=∠EBC=
12
∠A,BE與CD相交于點(diǎn)O,探究BD與CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.

小新同學(xué)是這樣思考的:
在平時(shí)的學(xué)習(xí)中,有這樣的經(jīng)驗(yàn):假如△ABC是等腰三角形,那么在給定一組對應(yīng)條件,如圖a,BE,CD分別是兩底角的平分線(或者如圖b,BE,CD分別是兩條腰的高線,或者如圖c,BE,CD分別是兩條腰的中線)時(shí),依據(jù)圖形的軸對稱性,利用全等三角形和等腰三角形的有關(guān)知識就可證得更多相等的線段或相等的角.這個問題也許可以通過添加輔助線構(gòu)造軸對稱圖形來解決.請參考小新同學(xué)的思路,解決上面這個問題.

查看答案和解析>>

同步練習(xí)冊答案