【題目】如下圖所示,直線a//b,A,B為直線b上的兩點,C,D為直線a上的兩點,則圖中面積一定相等的三角形有( )對.

A.1B.2C.3D.4

【答案】C

【解析】

根據兩條平行線間的距離處處相等,再結合三角形的面積公式,首先判斷出:△ABC與△ABD,△ACD與△BCD這兩對三角形分別是同底等高的,故兩對三角形的面積分別相等.再根據等式的性質,讓其中一對三角形的面積都減去公共的部分,即可得到第三對三角形的面積相等,即△AEC與△BED

解:△ABC與△ABD,△ACD與△BCD這兩對三角形分別是同底等高的,故兩對三角形的面積分別相等.

再根據等式的性質,讓其中一對三角形的面積都減去公共的部分,即可得到第三對三角形的面積相等,即△AEC與△BED

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象的一支在平面直角坐標系中的位置如圖所示,根據圖象回答下列問題

1圖象的另一支在第 象限在每個象限內,yx的增大而 ;

2若此反比例函數(shù)的圖象經過點(-23),m的值.點A(-5,2是否在這個函數(shù)圖象上?點B(-3,4呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BC的垂直平分線EF交∠ABC的平分線BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是(  )

A. 24° B. 30° C. 32° D. 36°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

問題情境

在綜合實踐課上,老師讓同學們“以三角形的旋轉”為主題進行數(shù)學活動,如圖(1),在三角形紙片ABC中,AB=AC,∠B=∠C=α.

操作發(fā)現(xiàn)

(1)創(chuàng)新小組將圖(1)中的ABC以點B為旋轉中心,逆時針旋轉角度α,得到DBE,再將ABC以點A為旋轉中心,順時針旋轉角度α,得到AFG,連接DF,得到圖(2),則四邊形AFDE的形狀是   

(2)實踐小組將圖(1)中的ABC以點B為旋轉中心,逆時針逆轉90°,得到DBE,再將ABC以點A為旋轉中心,順時針旋轉90°,得到AFG,連接DF、DG、AE,得到圖(3),發(fā)現(xiàn)四邊形AFDB為正方形,請你證明這個結論.

拓展探索

(3)請你在實踐小組操作的基礎上,再寫出圖(3)中的一個特殊四邊形,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AD是⊙O的弦,點FDA延長線上的一點,過⊙O上一點C作⊙O的切線交DF于點E,CEDF

(1)求證:AC平分∠FAB

(2)AE1,CE2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一次數(shù)學課外活動中,小明同學在點P處測得教學樓A位于北偏東60°方向,辦公樓B位于南偏東45°方向.小明沿正東方向前進60米到達C處,此時測得教學樓A恰好位于正北方向,辦公樓B正好位于正南方向.求教學樓A與辦公樓B之間的距離(結果精確到0.1米).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有190張鐵皮做盒子,每張鐵皮可做8個盒身或22個盒底,一個盒身與兩個盒底配成一個完整的盒子,(一張鐵皮只能生產一種產品)

1)向用多少張鐵皮做盒身,多少張鐵皮做盒底,可以正好用完190張鐵皮并制成一批完整的盒子?

2)這批盒子一共有多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小葉與小高欲測量公園內某棵樹DE的高度.他們在這棵樹正前方的一座樓亭前的臺階上的點A處測得這棵樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得這棵樹頂端D的仰角為60°.已知點A的高度AB3 m,臺階AC的坡度為1,且B,CE三點在同一條直線上,那么這棵樹DE的高度為(  )

A. 6 m B. 7 m C. 8 m D. 9 m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為支援災區(qū),某校愛心活動小組準備用籌集的資金購買AB兩種型號的學習用品共1000件.已知B型學習用品的單價比A型學習用品的單價多10元,用180元購買B型學習用品的件數(shù)與用120元購買A型學習用品的件數(shù)相同.

1)求AB兩種學習用品的單價各是多少元?

2)若購買這批學習用品的費用不超過28000元,則最多購買B型學習用品多少件?

查看答案和解析>>

同步練習冊答案