【題目】如圖,⊙O是△ABC的外接圓,圓心O在AB上,過點B作⊙O的切線交AC的延長線于點D.
(1)求證:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面積.
【答案】(1)詳見解析;(2)
【解析】
(1)由AB是⊙O的直徑,可得∠ACB=∠BCD=90°,又由BD是⊙O的切線,根據(jù)同角的余角相等,可得∠A=∠CBD,利用有兩角對應(yīng)相等的三角形相似,即可證得△ABC∽△BDC;
(2)由AC=8,BC=6,可求得△ABC的面積,又由△ABC∽△BDC,根據(jù)相似三角形的面積比等于相似比的平方,即可求得△BDC的面積.
(1)∵BD是⊙O的切線,
∴AB⊥BD,
∴∠ABD=90°.
∴∠A+∠D=90°.
∵AB是⊙O的直徑,
∴∠ACB=∠BCD=90°,
∴∠CBD+∠D=90°,
∴∠A=∠CBD,
∴△ABC∽△BDC;
(2)∵△ABC∽△BDC,
∴,
∵AC=8,BC=6,
∴S△ABCACBC8×6=24,
∴S△BDC=S△ABC24÷()2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,DE⊥AD交AB于E,EF∥BC交AC于F.
(1)求證:△ACD∽△ADE;
(2)求證:AD2=ABAF;
(3)作DG⊥BC交AB于G,連接FG,若FG=5,BE=8,直接寫出AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,
(1)求證:無論k取什么實數(shù)值,該方程總有兩個不相等的實數(shù)根?
(2)當(dāng)Rt△ABC的斜邊a=,且兩條直角邊的長b和c恰好是這個方程的兩個根時,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方ABCD內(nèi)一動點E到A、B、C三點的距離之和的最小值為,則這個正方形的邊長為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形OABC的頂點A的坐標(biāo)為(4,0),O為坐標(biāo)原點,點B在第一象限,連接AC, tan∠ACO=2,D是BC的中點,
(1)求點D的坐標(biāo);
(2)如圖2,M是線段OC上的點,OM=OC,點P是線段OM上的一個動點,經(jīng)過P、D、B三點的拋物線交 軸的正半軸于點E,連接DE交AB于點F.
①將△DBF沿DE所在的直線翻折,若點B恰好落在AC上,求此時點P的坐標(biāo);
②以線段DF為邊,在DF所在直線的右上方作等邊△DFG,當(dāng)動點P從點O運動到點M時,點G也隨之運動,請直接寫出點G運動的路徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=10CM,弦長AC=6cm,∠ACB的平分線交⊙O于點D.
(1)求BC的長.
(2)求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于點E.
(1)求證:DE是⊙O的切線.
(2)若⊙O的半徑為3cm,∠C=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c的圖象開口向上,且對稱軸在(﹣1,0)的左邊,下列結(jié)論一定正確的是( 。
A.abc>0B.2a﹣b<0C.b2﹣4ac<0D.a﹣b+c>﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D、E分別在邊AB、AC上,則在下列五個條件中:①∠AED=∠B;②DE∥BC;③=;④AD·BC=DE·AC;⑤∠ADE=∠C,能滿足△ADE∽△ACB的條件有( )
A.1個B.2C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com