在一個(gè)不透明的布袋里裝有4個(gè)標(biāo)有1,2,3,4的小球,它們的形狀、大小完全相同.小明從布袋里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,小紅在剩下的3個(gè)小球中隨機(jī)取出一個(gè)小球,記下數(shù)字為y,這樣確定了點(diǎn)Q的坐標(biāo)(x,y).
(1)畫樹狀圖或列表,寫出點(diǎn)Q所有可能的坐標(biāo);
(2)求點(diǎn)Q(x,y)在函數(shù)y=-x+5的圖象上的概率;
(3)小明和小紅約定做一個(gè)游戲,其規(guī)則為:若x、y滿足xy>6則小明勝,若x、y滿足xy<6則小紅勝,這個(gè)游戲公平嗎?說明理由;若不公平,請寫出公平的游戲規(guī)則.
解:畫樹狀圖得:
(1)點(diǎn)Q所有可能的坐標(biāo)有:
(1, 2),(1,3),(1,4)
(2,1),(2,3),(2,4)
(3,1),(3,2),(3,4)
(4,1),(4,2),(4,3)
共12種.
(2)∵共有12種等可能的結(jié)果,其中在函數(shù)y=﹣x+5的圖象上的有4種,即:
(1,4),(2,3),(3,2),(4,1),
∴點(diǎn)(x,y)在函數(shù)y=﹣x+5的圖象上的概率為:=.
(3)∵x、y滿足xy>6有:(2,4),(3,4),(4,2),(4,3)共4種情況,x、y滿足xy<6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6種情況.
,
. 公平的游戲規(guī)則為:若、滿足則小明勝,
若、滿足<6則小紅勝.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7 cm,則正方形的面積之和為_________cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1. 已知,等邊三角形ABC的邊長為4厘米,長為1厘米的線段MN在△ABC的邊AB上,沿AB方向以1厘米/秒的速度向B點(diǎn)運(yùn)動(運(yùn)動開始時(shí),點(diǎn)與點(diǎn)重合,點(diǎn)N到達(dá)點(diǎn)時(shí)運(yùn)動終止),過點(diǎn)M、N分別作邊的垂線,與△ABC的其他邊交于P、Q兩點(diǎn),線段MN運(yùn)動的時(shí)間為秒.
(1)線段MN在運(yùn)動的過程中,為何值時(shí),四邊形MNQP恰為矩形?并求出該矩形的面積.
(2)線段MN在運(yùn)動的過程中,四邊形MNQP的面積為S,運(yùn)動的時(shí)間為t.求四邊形MNQP的面積S隨運(yùn)動時(shí)間變化的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
1題圖 2題圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
拋物線與y軸交于點(diǎn)A,頂點(diǎn)為B,對稱軸BC與x軸交于點(diǎn)C.點(diǎn)P在拋物線上,直線PQ//BC交x軸于點(diǎn)Q,連接BQ.
(1)若含45°角的直角三角板如圖所示放置,其中一個(gè)頂點(diǎn)與點(diǎn)C重合,直角頂點(diǎn)D在BQ上,另一個(gè)頂點(diǎn)E在PQ上,求直線BQ的函數(shù)解析式;
(2)若含30°角的直角三角板的一個(gè)頂點(diǎn)與點(diǎn)C重合,直角頂點(diǎn)D在直線BQ上(點(diǎn)D不與點(diǎn)Q重合),另一個(gè)頂點(diǎn)E在PQ上,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
相鄰兩邊長分別為2和3的平行四邊形,若邊長保持不變,則它可以變?yōu)椋?nbsp; )
A. 矩形 B. 菱形 C. 正方形 D. 梯形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在□ABCD中,AE⊥BC于E,AF⊥CD于F,BD與AE、AF分別相交于G、H.
⑴求證:△ABE∽△ADF;
⑵若AG=AH,求證:四邊形ABCD是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com