先觀察1-
1
22
=
1
2
×
3
2
,1-
1
32
=
2
3
×
4
3
1-
1
42
=
3
4
×
5
4

(1)按上述規(guī)律填空:1-
1
1002
=______×______;1-
1
20102
=______×______.
(2)計(jì)算:(1-
1
22
)•(1-
1
32
)•(1-
1
42
)•…•(1-
1
20102
)
(1)依題意,得1-
1
1002
=
99
100
×
101
100
,1-
1
20102
=
2009
2010
×
2011
2010

故答案為:
99
100
,
101
100
2009
2010
,
2011
2010

(2)原式=
1
2
×
3
2
×
2
3
×
4
3
×
3
4
×
5
4
×…×
2009
2010
×
2011
2010

=
1
2
×
2011
2010

=
2011
4020
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

先觀察下列等式,再回答下列問題:
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2
;
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6
;
1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

(1)請你根據(jù)上面三個等式提供的信息,猜想
1+
1
42
+
1
52
的結(jié)果,并驗(yàn)證;
(2)請你按照上面各等式反映的規(guī)律,試寫出用含n的式子表示的等式(n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先觀察下列等式,再回答問題:
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

②.
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

根據(jù)上面三個等式提供的信息,請猜想
1+
1
42
+
1
52
的結(jié)果為
 
,請按照上各等式反映的規(guī)律,寫出用n(n為正整數(shù))表示的等式
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先觀察下列等式,再回答問題:
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

根據(jù)上面三個等式提供的信息,請猜想
1+
1
42
+
1
52
的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先觀察1-
1
22
=
1
2
×
3
2
,1-
1
32
=
2
3
×
4
3
,1-
1
42
=
3
4
×
5
4

(1)按上述規(guī)律填空:1-
1
1002
=
99
100
99
100
×
101
100
101
100
;1-
1
20102
=
2009
2010
2009
2010
×
2011
2010
2011
2010

(2)計(jì)算:(1-
1
22
)•(1-
1
32
)•(1-
1
42
)•…•(1-
1
20102
)

查看答案和解析>>

同步練習(xí)冊答案