精英家教網 > 初中數學 > 題目詳情
兩個全等的含30°、60°角的三角板ADE和三角板ABC如圖所示放置,E、A、C三點在一條直線上,連接BD,取BD的中點M,連接ME、MC,試判斷△EMC的形狀,并說明理由。
解:△ECM是等腰直角三角形
證明:連接AM,由題意得:
DE=AC,∠DAE+∠BAC=90°,
∴∠DAB=90°,
又∵DM=MB,
∴MA=DB=DM,∠MAD=∠MAB=45°,
∴∠MDE=∠MAC=105°,∠DMA=90°,
∴△EDM≌△CAM,
∴∠DME=∠AMC,EM=MC,
又∠DME+∠EMA=90°,
∴∠EMA+∠AMC=90°,
∴CM⊥EM,
所以△ECM是等腰直角三角形。
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網兩個全等的含30°,60°角的三角板ADE和三角板ABC如圖所示放置,E,A,C三點在一條直線上,連接BD,取BD的中點M,連接ME,MC.試判斷△EMC的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

用兩個全等的含30°角的直角三角形制作如圖1所示的兩種卡片,兩種卡片中扇形的半徑均為1,且扇形所在圓的圓心分別為長直角邊的中點和30°角的頂點,按先A后B的順序交替擺放A、B兩種卡片得到圖2所示的圖案.若擺放這個圖案共用兩種卡片
8張,則這個圖案中陰影部分的面積之和為
π
π
; 若擺放這個圖案共用兩種卡片(2n+1)張( n為正整數),則這個圖案中陰影部分的面積之和為
3n+2
12
π
3n+2
12
π
.(結果保留π )

查看答案和解析>>

科目:初中數學 來源: 題型:

用兩個全等的含30°角的直角三角形制作如圖A、B所示的兩種卡片,兩種卡片中扇形的半徑均為2,且扇形所在圓的圓心分別為長直角邊的中點和30°角的頂點,按先A后B的順序交替擺放A、B兩種卡片得到如圖所示的圖案.若擺放這個圖案共用兩種卡片12張,則這個圖案中陰影部分的面積之和為

查看答案和解析>>

科目:初中數學 來源: 題型:

用兩個全等的含30°角的直角三角形,長直角邊長為2.制作如圖1所示的兩種卡片,兩種卡片中扇形的半徑均為1,且扇形所在圓的圓心分別為長直角邊的中點和30°角的頂點,按先A后B的順序交替擺放A、B兩種卡片得到圖2所示的圖案.若擺放這個圖案共用兩種卡片8張,則這個圖案中陰影部分的之和為
π
π
.(結果保留π)

查看答案和解析>>

科目:初中數學 來源: 題型:

用兩個全等的含30°角的直角三角形制作如圖1所示的兩種卡片,兩種卡片中扇形的 半徑均為1, 且扇形所在圓的圓心分別為長直角邊的中點和30°角的頂點, 按先AB 的順序交替擺放A、B兩種卡片得到圖2所示的圖案. 若擺放這個圖案共用兩種卡片8張,則這個圖案中陰影部分的面積之和為           ; 若擺放這個圖案共用兩種卡片(2n+1)張( n為正整數), 則這個圖案中陰影部分的面積之和為         . (結果保留p )

 

查看答案和解析>>

同步練習冊答案