【題目】如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,左右兩個(gè)拋物線形是全等的.正常水位時(shí),大孔水面寬度為20m,頂點(diǎn)距水面6m,小孔頂點(diǎn)距水面4.5m.當(dāng)水位上漲剛好淹沒小孔時(shí),大孔的水面寬度為(。﹎.

A. 8m B. 9m C. 10 m D. 12 m

【答案】C

【解析】

根據(jù)題意,建立如圖所示的平面直角坐標(biāo)系,可以得到A、B、M的坐標(biāo),設(shè)出函數(shù)關(guān)系式,待定系數(shù)求解函數(shù)式.根據(jù)NC的長度,得出函數(shù)的y坐標(biāo),代入解析式,即可得出E、F的坐標(biāo),進(jìn)而得出答案.

解:如圖,建立如圖所示的平面直角坐標(biāo)系,由題意得,M點(diǎn)坐標(biāo)為(0,6),A點(diǎn)坐標(biāo)為(﹣10,0),B點(diǎn)坐標(biāo)為(10,0),

設(shè)中間大拋物線的函數(shù)式為y=ax2+bx+c,

代入三點(diǎn)的坐標(biāo)得到

解得

∴函數(shù)式為y=﹣x2+6.

∵NC=4.5米,

∴令y=4.5米,

代入解析式得x1=5,x2=﹣5,

∴可得EF=5-(﹣5)=10米.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE,將ADE沿AE對折到AFE,延長EF交邊BC于點(diǎn)G,連接AG,CF,下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S=,其中正確的有( )個(gè).

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題滿分8一張長為30cm,寬20cm的矩形紙片,如圖1所示,將這張紙片的四個(gè)角各剪去一個(gè)邊長相同的正方形后,把剩余部分折成一個(gè)無蓋的長方體紙盒,如圖1所示,如果折成的長方體紙盒的底面積264cm2,求剪掉的正方形紙片的邊長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰RtABCACB=90°)的直角邊與正方形DEFG的邊長均為2,且ACDE在同一直線上,開始時(shí)點(diǎn)C與點(diǎn)D重合,讓ABC沿這條直線向右平移,直到點(diǎn)A與點(diǎn)E重合為止.設(shè)CD的長為x,ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則yx之間的函數(shù)關(guān)系的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),且有最小值為﹣2.

(1)求這個(gè)函數(shù)的解析式;

(2)函數(shù)的開口方向、對稱軸;

(3)當(dāng)y>0時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一段長32m的籬笆和長8m的墻,圍成一個(gè)矩形的菜園.

(1)如圖1,如果矩形菜園的一邊靠墻AB,另三邊由籬笆CDEF圍成

①設(shè)DE等于xm,直接寫出菜園面積y與x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

②菜園的面積能不能等于110m2?若能,求出此時(shí)x的值;若不能,請說明理由;

(2)如圖2,如果矩形菜園的一邊由墻AB和一節(jié)籬笆BF構(gòu)成,另三邊由籬笆ADEF圍成,求菜園面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】最近,“校園安全”受到全社會(huì)的廣泛關(guān)注,巫溪中學(xué)對部分學(xué)生就校園安全知識(shí)的了解程度, 采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

(1)扇形統(tǒng)計(jì)圖中“基本了解”部分對應(yīng)扇形的圓心角為  度;請補(bǔ)全條形統(tǒng)計(jì)圖;

(2)若達(dá)到“了解”程度的人中有1名男生,2名女生,達(dá)到“不了解”程度的人中有1名男生和1名女生,若分別從達(dá)到“了解”程度和“不了解”程度的人中分別抽取1人參加校園知識(shí)競賽,請用樹狀圖或列表法求出恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直徑為 10cm 的⊙O 中,兩條弦 AB,CD 分別位于圓心的異側(cè),ABCD,且,若 AB=8cm,則 CD 的長為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=90°,ADBCBECDEAD的延長線于F,DC=2ADABBE

(1)求證:ADDE

(2)求證:四邊形BCFD是菱形.

查看答案和解析>>

同步練習(xí)冊答案