精英家教網 > 初中數學 > 題目詳情

【題目】如圖,P為反比例函數y= (k>0)在第一象限內圖象上的一點,過點P分別作x軸,y軸的垂線交一次函數y=﹣x﹣4的圖象于點A、B.若∠AOB=135°,則k的值是( )

A.2
B.4
C.6
D.8

【答案】D
【解析】解:方法1、作BF⊥x軸,OE⊥AB,CQ⊥AP,如圖1,

設P點坐標(n, ),

∵直線AB函數式為y=﹣x﹣4,PB⊥y軸,PA⊥x軸,

∴C(0,﹣4),G(﹣4,0),

∴OC=OG,

∴∠OGC=∠OCG=45°

∵PB∥OG,PA∥OC,

∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,

∴PA=PB,

∵P點坐標(n, ),

∴OD=CQ=n,

∴AD=AQ+DQ=n+4;

∵當x=0時,y=﹣x﹣4=﹣4,

∴OC=DQ=4,GE=OE= OC= ;

同理可證:BG= BF= PD= ,

∴BE=BG+EG= + ;

∵∠AOB=135°,

∴∠OBE+∠OAE=45°,

∵∠DAO+∠OAE=45°,

∴∠DAO=∠OBE,

∵在△BOE和△AOD中, ,

∴△BOE∽△AOD;

= ,即 = ;

整理得:nk+2n2=8n+2n2,化簡得:k=8;

所以答案是:D.

方法2、如圖2,

過B作BF⊥x軸于F,過點A作AD⊥y軸于D,

∵直線AB函數式為y=﹣x﹣4,PB⊥y軸,PA⊥x軸,

∴C(0,﹣4),G(﹣4,0),

∴OC=OG,

∴∠OGC=∠OCG=45°

∵PB∥OG,PA∥OC,

∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,

∴PA=PB,

∵P點坐標(n, ),

∴A(n,﹣n﹣4),B(﹣4﹣

∵當x=0時,y=﹣x﹣4=﹣4,

∴OC=4,

當y=0時,x=﹣4.

∴OG=4,

∵∠AOB=135°,

∴∠BOG+∠AOC=45°,

∵直線AB的解析式為y=﹣x﹣4,

∴∠AGO=∠OCG=45°,

∴∠BGO=∠OCA,∠BOG+∠OBG=45°,

∴∠OBG=∠AOC,

∴△BOG∽△OAC,

=

= ,

在等腰Rt△BFG中,BG= BF= ,

在等腰Rt△ACD中,AC= AD= n,

,

∴k=8,

所以答案是:D.

【考點精析】關于本題考查的平行線的判定與性質和相似三角形的判定與性質,需要了解由角的相等或互補(數量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數量關系)的結論是平行線的性質;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,中,,PA點出發(fā)沿路徑向終點運動,終點為B點;點QB點出發(fā)沿路徑向終點運動,終點為APQ分別以1和3的運動速度同時開始運動,兩點都要到相應的終點時才能停止運動,在某時刻,分別過PQE,問:點P運動多少時間時,QFC全等?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學開展“綠化家鄉(xiāng)、植樹造林”活動,為了解全校植樹情況,對該校甲、乙、丙、丁四個班級植樹情況進行了調查,將收集的數據整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖,請根據圖中的信息,完成下列問題:

(1)這四個班共植樹棵;
(2)請你在答題卡上補全兩幅統(tǒng)計圖;
(3)求圖1中“甲”班級所對應的扇形圓心角的度數;
(4)若四個班級植樹的平均成活率是95%,全校共植樹2000棵,請你估計全校種植的樹中成活的樹有多少棵?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】由太原開往運城的D5303次列車,途中有6個停車站,這次列車的不同票價最多有( )

A. 28 B. 15 C. 56 D. 30

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,曲線l是由函數y= 在第一象限內的圖象繞坐標原點O逆時針旋轉45°得到的,過點A(﹣4 ,4 ),B(2 ,2 )的直線與曲線l相交于點M、N,則△OMN的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,H在CD的延長線上,四邊形CEFH也為正方形,則△DBF的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD,ABCD,點B、E、FD在同一條直線上,∠BAE=∠DCF.

(1)求證:AECF

(2)連結AF、EC,試猜想四邊形AECF是什么四邊形,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是(
A.直角三角形
B.正五邊形
C.正方形
D.平行四邊形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC的三邊ABBC、CA長分別是20、3040,其三條角平分線將△ABC分為三個三角形,則SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

查看答案和解析>>

同步練習冊答案