【題目】從三角形(不是等腰三角形)一個頂點引出一條射線于對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.

1)如圖1,在ABC中,CD為角平分線,∠A=40°B=60°,求證:CDABC的完美分割線.

2)在ABC中,∠A=48°,CDABC的完美分割線,且ACD為等腰三角形,求∠ACB的度數(shù).

3)如圖2,ABC中,AC=2,BC=CDABC的完美分割線,且ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.

【答案】1)證明見解析;(2ACB=96°114°;(3

【解析】試題分析:(1)根據(jù)完美分割線的定義只要證明①ABC不是等腰三角形,②ACD是等腰三角形,③BDCBCA即可.

2)分三種情形討論即可如圖2,當(dāng)AD=CD時,如圖3中,當(dāng)AD=AC時,如圖4中,當(dāng)AC=CD時,分別求出ACB即可.

3)設(shè)BD=x,利用BCDBAC,得,列出方程即可解決問題.

1)如圖1中,∵∠A=40°B=60°∴∠ACB=80°,ABC不是等腰三角形,CD平分ACB∴∠ACD=BCD=ACB=40°,∴∠ACD=A=40°,ACD為等腰三角形,∵∠DCB=A=40°,CBD=ABCBCDBAC,CDABC的完美分割線.

2當(dāng)AD=CD時,如圖2,ACD=∠A=45°BDCBCA,∴∠BCD=∠A=48°∴∠ACB=∠ACD+∠BCD=96°

當(dāng)AD=AC時,如圖3中,ACD=∠ADC=180°-48°÷2=66°,BDCBCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°

當(dāng)AC=CD時,如圖4中,ADC=∠A=48°,BDCBCA,∴∠BCD=∠A=48°∵∠ADCBCD,矛盾,舍棄,∴∠ACB=96°114°

3)由已知AC=AD=2BCDBAC, 設(shè)BD=x,),x0x=,BCDBAC=,CD=×2=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】年冬季越野賽在濱河學(xué)校操場舉行,某運動員從起點學(xué)校東門出發(fā),途徑濕地公園,沿比賽路線跑回終點學(xué)校東門.沿該運動員離開起點的路程(千米)與跑步時間(時間)之間的函數(shù)關(guān)系如圖所示,其中從起點到濕地公園的平均速度是千米/分鐘,用時分鐘,根據(jù)圖像提供的信息,解答下列問題:

)求圖中的值;

)組委會在距離起點千米處設(shè)立一個拍攝點,該運動員從第一次過點到第二次過點所用的時間為分鐘.

①求所在直線的函數(shù)解析式;

②該運動員跑完全程用時多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中, , 軸, .

⑴.求點的坐標(biāo):

⑵.四邊形的面積四邊形;

⑶. 在軸上是否存在點,使 = 四邊形;若存在,求出點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一種廣場三聯(lián)漫步機,其側(cè)面示意圖如圖2所示,其中ABAC=120cm,BC=80cm,AD=30cm,∠DAC90°.求點D到地面的高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,DAB的中點,E,F分別是AC,BC.上的點(E不與端點A,C重合),且連接EF并取EF的中點O,連接DO并延長至點G,使,連接DEDF,GE,GF

(1)求證:四邊形EDFG是正方形;

(2)直接寫出當(dāng)點E在什么位置時,四邊形EDFG的面積最小?最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列條件不能判定四邊形ABCD是矩形的是(  )

A.DAB=∠ABC=∠BCD90°B.ABCD,ABCD,ABAD

C.AOBOCODOD.AOBOCODO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD在平面直角坐標(biāo)系中,點A(1,8),B(16),C(76)

(1)請直接寫出D點的坐標(biāo).

(2)連接OB,OD,BD,請求出三角形OBD的面積.

(3)若長方形ABCD以每秒1個單位長度的速度向下運動,當(dāng)邊BCx軸重合時,停止運動,設(shè)運動的時間為t秒,t為多少時,三角形OBD的面積等于長方形ABCD的面積的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小正方形的邊長都是1,三角形ABC三個頂點與方格紙中小正方形的頂點重合,請在方格紙中分別畫出符合要求的圖形,具體要求如下:

(1)在圖①中平移三角形ABC,點A移動到點P,畫出平移后的三角形PMN;

(2)在圖②中將三角形ABC三個頂點的橫、縱坐標(biāo)都減去2,畫出得到的三角形A1B1C1;

(3)在圖③中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,且A點的坐標(biāo)為(0,2),C點的坐標(biāo)為(1,5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB8,BC4,將矩形沿AC折疊,點D落在點D′處,則重疊部分△AFC的面積為(

A.6B.8C.10D.12

查看答案和解析>>

同步練習(xí)冊答案