【題目】已知A3x2+x+2B=﹣3x2+9x+6

1)求2AB;

2)若2AB互為相反數(shù),求C的表達(dá)式;

3)在(2)的條件下,若x2C2x+7a的解,求a的值.

【答案】17x2x+2;(2)﹣14x2+2x1;(3)﹣

【解析】

1)根據(jù)題意列出算式23x2+x+2)﹣(﹣3x2+9x+6),再去括號(hào)、合并即可求解;

2)由已知等式知2AB+0,將多項(xiàng)式代入,依此即可求解;

3)由題意得出x2是方程C2x+7a的解,從而得出關(guān)于a的方程,解之可得.

解:(12AB

23x2+x+2)﹣(﹣3x2+9x+6

6x2+2x+4+x23x2

7x2x+2;

2)依題意有:

7x2x+2+0

14x22x+4+C30,

C=﹣14x2+2x1;

3)∵x2C2x+7a的解,

∴﹣56+414+7a

解得:a=﹣

a的值是﹣

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

十一黃金周期間,齊齊哈爾市動(dòng)物園在7天假期中每天接待的人數(shù)變化如下表(正數(shù)表小比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù)):

日期

101

102

103

104

105

106

107

人數(shù)變化(萬人)

+1.6

+0.8

+0.4

-0.4

-0.8

+0.2

-1.2

1)若9月份的最后一天930日的游客人數(shù)記為萬人,請(qǐng)用含的代數(shù)式表示102日的游客人數(shù);

2)在(1)條件下,請(qǐng)直接寫出七天內(nèi)游客人數(shù)最多的是哪天,有多少萬人?

3)若930日的游客人數(shù)為2萬人,門票每人100元,則黃金周期間齊齊哈爾市動(dòng)物園票收入是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x2+bx+cx軸交于點(diǎn)A(﹣1,0),B(3,0),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為P.

(1)如圖1,連接AP,分別求出拋物線與直線AP的解析式;

(2)如圖1,點(diǎn)D(2,3)在拋物線上,在第一象限內(nèi),直線AP上是否存在點(diǎn)E,使DEEO?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

(3)如圖2,連接BC與拋物線的對(duì)稱軸交于點(diǎn)F,在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)G,使GPFGBF的面積相等?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】參照學(xué)習(xí)函數(shù)的過程與方法,探究函數(shù)y=的圖象與性質(zhì).

因?yàn)?/span>y=,即y=﹣+1,所以我們對(duì)比函數(shù)y=﹣來探究.

列表:

x

﹣4

﹣3

﹣2

﹣1

1

2

3

4

y=﹣

1

2

4

﹣4

﹣1

1

y=

2

3

5

﹣3

﹣1

0

描點(diǎn):在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以y=相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn),如圖所示:

(1)請(qǐng)把y軸左邊各點(diǎn)和右邊各點(diǎn),分別用一條光滑曲線順次連接起來;

(2)觀察圖象并分析表格,回答下列問題:

①當(dāng)x<0時(shí),yx的增大而   ;(填增大減小”)

y=的圖象是由y=﹣的圖象向   平移   個(gè)單位而得到;

③圖象關(guān)于點(diǎn)   中心對(duì)稱.(填點(diǎn)的坐標(biāo))

(3)設(shè)A(x1,y1),B(x2,y2)是函數(shù)y=的圖象上的兩點(diǎn),且x1+x2=0,試求y1+y2+3的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某個(gè)數(shù)值轉(zhuǎn)換器的原理如圖所示:若開始輸入x的值是1,第1次輸出的結(jié)果是4,第2次輸出的結(jié)果是2,依次繼續(xù)下去,則第2020次輸出的結(jié)果是( 。

A.1010B.4C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)O在直線AB上,OCOD,∠EDO與∠1互余,OF平分∠CODDE于點(diǎn)F,若∠OFD=70°,求∠1的度數(shù).

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡).

2)解∵∠EDO與∠1互余

∴∠EDO+1=90°

OCOD

∴∠COD=90°

∴∠EDO+1+COD=180°

______+______=180°

EDAB.(______

∴∠AOF=OFD=70°______

OF平分∠COD,(已知)

∴∠COF=COD=45°______

∴∠1=AOF-COF=______°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:

在平面直角坐標(biāo)系xOy中有不重合的兩點(diǎn)Ax1,y1)和點(diǎn)Bx2,y2),小明在學(xué)習(xí)中發(fā)現(xiàn),若x1=x2,則ABy軸,且線段AB的長度為|y1y2|;若y1=y2,則ABx軸,且線段AB的長度為|x1x2|;

(應(yīng)用):

1)若點(diǎn)A(﹣11)、B2,1),則ABx軸,AB的長度為 

2)若點(diǎn)C1,0),且CDy軸,且CD=2,則點(diǎn)D的坐標(biāo)為   

(拓展):

我們規(guī)定:平面直角坐標(biāo)系中任意不重合的兩點(diǎn)Mx1,y1),Nx2,y2)之間的折線距離為dMN=|x1x2|+|y1y2|;例如:圖1中,點(diǎn)M(﹣1,1)與點(diǎn)N1,﹣2)之間的折線距離為dM,N=|11|+|1﹣(﹣2|=2+3=5

解決下列問題:

1)已知E2,0),若F(﹣1,﹣2),求dE,F);

2)如圖2,已知E2,0),H1t),若dE,H=3,求t的值;

3)如圖3,已知P33),點(diǎn)Qx軸上,且三角形OPQ的面積為3,求dPQ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)DAB上,點(diǎn)EAC上,BE、CD相交于點(diǎn)O.

1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度數(shù);

2)試猜想∠BOC與∠A+B+C之間的關(guān)系,并證明你猜想的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若,則稱是關(guān)于的平衡數(shù).

是關(guān)于的平衡數(shù), 是關(guān)于的平衡數(shù). (用含的代數(shù)式表示)

,判斷是否是關(guān)于的平衡數(shù),并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案