如圖1,已知A(3,0)、B(4,4)、原點(diǎn)O(0,0)在拋物線y=ax2+bx+c (a≠0)上.
(1)求拋物線的解析式.
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個交點(diǎn)D,求m的值及點(diǎn)D的坐標(biāo).
(3)如圖2,若點(diǎn)N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點(diǎn)P的坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)N、O、B對應(yīng))
(1)y=x2﹣3x (2)m=4 點(diǎn)D的坐標(biāo)為(2,﹣2) (3)點(diǎn)P的坐標(biāo)為()和()
【解析】
試題分析:(1)利用待定系數(shù)法求二次函數(shù)解析式進(jìn)而得出答案即可。
(2)首先求出直線OB的解析式為y=x,進(jìn)而將二次函數(shù)以一次函數(shù)聯(lián)立求出交點(diǎn)即可。
(3)首先求出直線A′B的解析式,進(jìn)而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,進(jìn)而求出點(diǎn)P1的坐標(biāo),再利用翻折變換的性質(zhì)得出另一點(diǎn)的坐標(biāo)。
解:(1)∵A(3,0)、B(4,4)、O(0,0)在拋物線y=ax2+bx+c (a≠0)上,
∴,解得:。
∴拋物線的解析式為:y=x2﹣3x。
(2)設(shè)直線OB的解析式為y=k1x( k1≠0),
由點(diǎn)B(4,4)得4=4 k1,解得k1=1。
∴直線OB的解析式為y=x,∠AOB=45°。
∵B(4,4),∴點(diǎn)B向下平移m個單位長度的點(diǎn)B′的坐標(biāo)為(4,0)。∴m=4。
∴平移m個單位長度的直線為y=x﹣4。
解方程組,解得:。
∴點(diǎn)D的坐標(biāo)為(2,﹣2)。
(3)∵直線OB的解析式y(tǒng)=x,且A(3,0),
∴點(diǎn)A關(guān)于直線OB的對稱點(diǎn)A′的坐標(biāo)為(0,3)。
設(shè)直線A′B的解析式為y=k2x+3,此直線過點(diǎn)B(4,4)。
∴4k2+3=4,解得 k2=。
∴直線A′B的解析式為y=x+3。
∵∠NBO=∠ABO,∴點(diǎn)N在直線A′B上。
設(shè)點(diǎn)N(n, n+3),
又點(diǎn)N在拋物線y=x2﹣3x上,
∴n+3=n2﹣3n,解得 n1=,n2=4(不合題意,舍去)。
∴點(diǎn)N的坐標(biāo)為()。
如圖,將△NOB沿x軸翻折,得到△N1OB1,
則 N1 (),B1(4,﹣4)。
∴O、D、B1都在直線y=﹣x上。
∵△P1OD∽△NOB,∴△P1OD∽△N1OB1!郟1為O N1的中點(diǎn)。
∴!帱c(diǎn)P1的坐標(biāo)為()。
將△P1OD沿直線y=﹣x翻折,可得另一個滿足條件的點(diǎn)到x軸距離等于P1到y(tǒng)軸距離,點(diǎn)到y(tǒng)軸距離等于P1到x軸距離,
∴此點(diǎn)坐標(biāo)為:()。
綜上所述,點(diǎn)P的坐標(biāo)為()和()。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
2 |
x |
k |
x |
A、0 | B、1 | C、2 | D、5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com