【題目】閱讀材料:若關(guān)于x的一元二次方程的根均為整數(shù),稱該方程為“快樂方程”. 我們發(fā)現(xiàn)任何一個(gè)“快樂方程”的判別式一定為完全平方數(shù). 規(guī)定為該“快樂方程”的“快樂數(shù)”. 若有另一個(gè)“快樂方程”的“快樂數(shù)”為且滿足,則稱互為“樂呵數(shù)”. 例如:“快樂方程”的兩根均為整數(shù),其判別式,其“快樂數(shù)”
(1)“快樂方程”的“快樂數(shù)”為 ,若關(guān)于x的一元二次方程(m為整數(shù),且5<m<22)是“快樂方程”,求其“快樂數(shù)”;
(2)若關(guān)于x的一元二次方程與(m、n均為整數(shù))都是“快樂方程”,且其“快樂數(shù)”互為“樂呵數(shù)”,求n的值.
【答案】(1)-1 (2)0或1或4
【解析】
(1)根據(jù)“快樂數(shù)”的定義即可求出“快樂方程”的“快樂數(shù)”,
,根據(jù)“快樂方程”的定義,得到為完全平方數(shù),根據(jù)5<m<22,得到49<4m+29<117,即可求出4m+29=64或81或100,根據(jù)m為整數(shù),即可求出m的值,即可求其“快樂數(shù)”;
(2)關(guān)于x的一元二次方程是“快樂方程”,即可求出的值,
求出方程的“快樂數(shù)”,根據(jù)“樂呵數(shù)”的定義即可求出n的值.
解:(1)
由題得
∵已知方程為“快樂方程”
∴為完全平方數(shù)
又∵5<m<22 則49<4m+29<117
∴ 4m+29=64或81或100
∵m為整數(shù)
∴m=13
∴原方程為,其根為,,符合題意.
其“快樂數(shù)”為:
(2)由題得方程的
∵方程是“快樂方程”
∴完全平方數(shù).
設(shè)(k為整數(shù)),則
又與同奇偶,且m、k為整數(shù),則
span>或或或
解得:或
∴方程為或,其根均為整數(shù),
它們的“快樂數(shù)”都為 .
由題得方程可變形為,解得,,
∵n 為整數(shù),
∴方程為“快樂方程”,其“快樂數(shù)”為
又由題方程、的“快樂數(shù)”互為“樂呵數(shù)”,可得
(i)當(dāng)時(shí),, 解得,,
(ii)當(dāng)時(shí),, 解得,
綜上所述,n的值為0或1或4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=x+b(b為常數(shù))的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的折線是函數(shù)y=|x+b|(b為常數(shù))的圖象
(1)當(dāng)b=0時(shí),在同一直角坐標(biāo)系中分別畫出函數(shù)與y=|x+b|的圖象,并利用這兩個(gè)圖象回答:x取什么值時(shí),比|x|大?
(2)若函數(shù)y=|x+b|(b為常數(shù))的圖象在直線y=1下方的點(diǎn)的橫坐標(biāo)x滿足0<x<3,直接寫出b的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(1,y1)、B(﹣2,y2)是雙曲線y=上兩點(diǎn),且y1+y2=1.
(1)求雙曲線y=的解析式;
(2)若點(diǎn)C的坐標(biāo)為(0,﹣1)時(shí),求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共4只,某學(xué)習(xí)小組做摸球試驗(yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù).如表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1 000 |
摸到白球的次數(shù)m | 28 | 34 | 48 | 130 | 197 | 251 |
摸到白球的頻率 | 0.28 | 0.23 | 0.24 | 0.26 | 0.246 | 0.251 |
(1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近 (精確到0.01);
(2)試估算口袋中白種顏色的球有多少只?
(3)請(qǐng)根據(jù)估算的結(jié)果思考從口袋中先摸出一球,不放回,再摸出一球,這兩只球顏色不同的概率是多少?畫出樹狀圖(或列表)表示所有可能的結(jié)果,并計(jì)算概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末秋高氣爽,陽光明媚,小趙帶爺爺?shù)綖I江路去散步. 祖孫倆在長度為600米的、路段上往返行走. 他們從地出發(fā),小趙陪爺爺走了兩圈一同回到地后,就開始勻速跑步,爺爺繼續(xù)勻速散步. 如圖反映了他們距離地的路程(米)與小趙跑步的時(shí)間(分鐘)的部分關(guān)系圖(他們各自到達(dá)地或地后立即調(diào)頭,調(diào)頭轉(zhuǎn)身時(shí)間忽略不計(jì)). 則小趙跑步過程中祖孫倆第四次與第五次相遇地點(diǎn)間距為_______米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是邊長為的正方形ABCD的對(duì)角線BD上的動(dòng)點(diǎn),過點(diǎn)P分別作PE⊥BC于點(diǎn)E,PF⊥DC于點(diǎn)F,連接AP并延長,交射線BC于點(diǎn)H,交射線DC于點(diǎn)M,連接EF交AH于點(diǎn)G,當(dāng)點(diǎn)P在BD上運(yùn)動(dòng)時(shí)(不包括B、D兩點(diǎn)),以下結(jié)論中:①M(fèi)F=MC;②AH⊥EF;③AP2=PMPH;④EF的最小值是.其中正確結(jié)論_____.(填寫序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,下列結(jié)論中:
①abc<0;②9a﹣3b+c<0;③b2﹣4ac>0;④a>b,
正確的結(jié)論是_____(只填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有四張正面分別標(biāo)有數(shù)字2,1,﹣3,﹣4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從四張卡片中隨機(jī)地摸取一張不放回,將該卡片上的數(shù)字記為m,再隨機(jī)地摸取一張,將卡片上的數(shù)字記為n.
(1)請(qǐng)畫出樹狀圖并寫出(m,n)所有可能的結(jié)果;
(2)求所選出的m,n能使一次函數(shù)y=mx+n的圖象經(jīng)過第二、三、四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司欲招聘一名公務(wù)人員,對(duì)甲、乙兩位應(yīng)試者進(jìn)行了面試和筆試,他們的成績(百分制)如表所示:
應(yīng)試者 | 面試 | 筆試 |
甲 | 86 | 90 |
乙 | 92 | 83 |
(1)如果公司認(rèn)為面試和筆試同等重要,從他們的成績看,誰將被錄取?
(2)如果公司認(rèn)為作為公務(wù)人員面試成績應(yīng)該比筆試成績更重要,并分別賦予它們6和4的權(quán),計(jì)算甲、乙兩人各自的平均成績,誰將被錄?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com