【題目】定義:有三個(gè)角相等的四邊形叫做三等角四邊形.

1)在三等角四邊形中,,則的取值范圍為________.

2)如圖①,折疊平行四邊形,使得頂點(diǎn)、分別落在邊、上的點(diǎn)、處,折痕為、.求證:四邊形為三等角四邊形;

3)如圖②,三等角四邊形中,,若,,,則 的長(zhǎng)度為多少?

【答案】1;(2)見解析;(3的長(zhǎng)度為.

【解析】

1)根據(jù)四邊形的內(nèi)角和是360°,確定出∠BAD的范圍;

2)由四邊形DEBF為平行四邊形,得到∠E=F,且∠E+EBF=180°,再根據(jù)等角的補(bǔ)角相等,判斷出∠DAB=DCB=ABC即可;

3)延長(zhǎng)BA,過D點(diǎn)作DGBA,繼續(xù)延長(zhǎng)BA,使得AG=EG,連接DE;延長(zhǎng)BC,過D點(diǎn)作DHBC,繼續(xù)延長(zhǎng)BC,使得CH=HF,連接DF,由SAS證明DEG≌△DAG,得出AD=DE=,∠DAG=DEA,由SAS證明DFH≌△DCH,得出CD=DF=6,∠DCH=DFH,證出DEBFBEDF,得出四邊形DEBF是平行四邊形,得出DF=BE=6,DE=BF=,由等腰三角形的性質(zhì)得出EG=AG=BE-AB=1,在RtDGA中,由勾股定理求出DG==4,由平行四邊形DEBF的面積求出,在RtDCH中,由勾股定理求出,即可得出BC的長(zhǎng)度.

1)∵

故答案為:

2)證明:∵四邊形為平行四邊形,

,

,

,

∴四邊形是三等角四邊形;

3)延長(zhǎng),過點(diǎn)作,繼續(xù)延長(zhǎng),使得,連接;延長(zhǎng),過點(diǎn)作,繼續(xù)延長(zhǎng),使得,連接,如圖所示:

中,

,

同理可得,

,

,

∴四邊形是平行四邊形,

,

,

∵平行四邊形的面積,

即:

中,

故答案為:的長(zhǎng)度為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以△ABC的三邊為邊在BC同側(cè)分別作等邊三角形,即△ABD,△BCE,△ACF

(1)四邊形ADEF__________四邊形;

(2)當(dāng)△ABC滿足條件____________時(shí),四邊形ADEF為矩形;

(3)當(dāng)△ABC滿足條件____________時(shí),四邊形ADEF為菱形;

(4)當(dāng)△ABC滿足條件____________時(shí),四邊形ADEF不存在.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y=x﹣2與反比例函數(shù)y=的圖象交于A、B兩點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)觀察圖象,直接寫出一次函數(shù)值小于反比例函數(shù)值的x的取值范圍;

(3)坐標(biāo)原點(diǎn)為O,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,E,FBD所在直線上的兩點(diǎn).若AE=,EAF=135°,則以下結(jié)論正確的是( 。

A. DE=1 B. tanAFO= C. AF= D. 四邊形AFCE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在 數(shù)軸上對(duì)應(yīng)的數(shù)分別用表示,且.是數(shù)軸的一動(dòng)點(diǎn).

⑴在數(shù)軸上標(biāo)出的位置,并求出之間的距離;

⑵數(shù)軸上一點(diǎn)點(diǎn)24個(gè)單位的長(zhǎng)度,其對(duì)應(yīng)的數(shù)滿足,當(dāng)點(diǎn)滿足時(shí),求點(diǎn)對(duì)應(yīng)的數(shù).

⑶動(dòng)點(diǎn)從原點(diǎn)開始第一次向左移動(dòng)1個(gè)單位,第二次向右移動(dòng)3個(gè)單位長(zhǎng)度,第三次向左移動(dòng)5個(gè)單位長(zhǎng)度,第四次向右移動(dòng)7個(gè)單位長(zhǎng)度,……點(diǎn)能移動(dòng)到與重合的位置嗎?若能,請(qǐng)?zhí)骄康趲状我苿?dòng)時(shí)重合;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于a的方程的解也是關(guān)于x的方程=11的解.

(1)a、b的值;

(2)若線段AB=a,在直線AB上取一點(diǎn)P,恰好使,點(diǎn)QAP的中點(diǎn),求線段BQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)七年級(jí)開展演講比賽,學(xué)校決定購(gòu)買一些筆記本和鋼筆作為獎(jiǎng)品.現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的筆記本和鋼筆.筆記本定價(jià)為每本20元,鋼筆每支定價(jià)5元,經(jīng)洽談后,甲店每買一本筆記本贈(zèng)一支鋼筆;乙店全部按定價(jià)的9折優(yōu)惠.七年級(jí)需筆記本20本,鋼筆若干支(不小于20支).問:

1)如果購(gòu)買鋼筆不小于20)支,則在甲店購(gòu)買需付款 ______ 元,在乙店購(gòu)買需付款 _______________ 元.(用x的代數(shù)式表示)

2)當(dāng)購(gòu)買鋼筆多少支時(shí),在兩店購(gòu)買付款一樣?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用同樣規(guī)格的黑白兩種顏色的正方形瓷磚,按下圖的方式鋪地板:

1)觀察圖形,填寫下表:

圖形

1

2

3

……

黑色瓷磚的塊數(shù)

4

……

黑白兩種瓷磚的總塊數(shù)

15

……

2)依上推測(cè),第n個(gè)圖形中黑色瓷磚的塊數(shù)為__________________;黑白兩種瓷磚的總塊數(shù)為__________________(都用含n的代數(shù)式表示)

3)白色瓷磚的塊數(shù)可能比黑色瓷磚的塊數(shù)多2014塊嗎?若能,求出是第幾個(gè)圖形;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】年是我市“創(chuàng)建國(guó)家衛(wèi)生城市”第一年,為了了解本班名學(xué)生對(duì)“創(chuàng)衛(wèi)”的知曉率,某同學(xué)采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查,調(diào)查分為四個(gè)選項(xiàng):非常了解,比較了解,基本了解,不甚了解.?dāng)?shù)據(jù)整理如下:

請(qǐng)畫出條形圖和扇形圖來(lái)描述以上統(tǒng)計(jì)數(shù)據(jù).

查看答案和解析>>

同步練習(xí)冊(cè)答案