【題目】如圖,四邊形ABCD是邊長為1的正方形,E,FBD所在直線上的兩點.若AE=,EAF=135°,則以下結(jié)論正確的是( 。

A. DE=1 B. tanAFO= C. AF= D. 四邊形AFCE的面積為

【答案】C

【解析】因為四邊形ABCD是正方形,所以AB=CB=CD=AD=1,ACBA, ADO=ABO=45°,所以OD=OB=OA=, ABF=ADE=135°,RtAEO,根據(jù)勾股定理可得:EO=,DE=,所以A錯誤,因為EAF =135°, BAD =90°,所以EAF =135°,

BAF+DAE=45°, 所以BAF =AED, 所以ABF ∽△EDA ,所以,,所以BF=,RtAOF,由勾股定理可得:AF=,所以C正確,所以tanAFO=,所以B錯誤,所以,所以D錯誤,故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖ORt△ABC斜邊AB上一點,OA為半徑的OBC相切于點DAC相交于點E,AB相交于點F連接AD

1求證AD平分BAC;

2若點E為弧AD的中點,探究線段BD,CD之間的數(shù)量關系,并證明你的結(jié)論;

3若點E為弧AD的中點,CD=,求弧DF與線段BD,BF所圍成的陰影部分的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中,點P是邊AD上的動點(點P不與點A、點D重合),點Q是邊CD上一點,聯(lián)結(jié)PB、PQ,且∠PBC=∠BPQ.

(1)當QD=QC時,求∠ABP的正切值;

(2)設AP=x,CQ=y,求y關于x的函數(shù)解析式;

(3)聯(lián)結(jié)BQ,在△PBQ中是否存在度數(shù)不變的角?若存在,指出這個角,并求出它的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖矩形ABCD,AB=12,BC=8,E、F分別為AB、CD的中點,P、QA. C同時出發(fā),在邊AD、CB上以每秒1個單位向D、B運動,運動時間為t(0<t<8).

(1)如圖1,連接PE、EQ、QFPF,求證:無論t0<t<8內(nèi)取任何值,四邊形PEQF總為平行四邊形;

(2)如圖2,連接PQCEG,若PG=4QG,求t的值;

(3)在運動過程中,是否存在某時刻使得PQCEG?若存在,請求出t的值:若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知數(shù)軸上三點對應的數(shù)分別為、3、5,點為數(shù)軸上任意一點,其對應的數(shù)為.與點之間的距離表示為,點與點之間的距離表示為.

1)若,則 ;

2)若,求的值;

3)若點從點出發(fā),以每秒3個單位的速度向右運動,點以每秒1個單位的速度向左運動,點以每秒2個單位的速度向右運動,三點同時出發(fā).設運動時間為秒,試判斷:的值是否會隨著的變化而變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,點MCD中點,將MBC沿BM翻折至MBE,若AME α,∠ABE β,則 α β 之間的數(shù)量關系為( )

A. α+3β=180° B. β-α=20° C. α+β=80° D. 3β-2α=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:有三個角相等的四邊形叫做三等角四邊形.

1)在三等角四邊形中,,則的取值范圍為________.

2)如圖①,折疊平行四邊形,使得頂點、分別落在邊上的點、處,折痕為.求證:四邊形為三等角四邊形;

3)如圖②,三等角四邊形中,,若,,則 的長度為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=4,O為矩形ABCD的中心,以D為圓心1為半徑作⊙D,P為⊙D上的一個動點,連接AP、OP,則△AOP面積的最大值為(  )

A. 4 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:yy1y2,y1x2成正比例,y2x成反比例,且x1時,y3;x=﹣1y1

(1)y關于x的函數(shù)關系式.

(2)x=﹣時,y的值.

查看答案和解析>>

同步練習冊答案