【題目】如圖,在平面直角坐標系中,圓心為P(,)的動圓經過點A(1,2)且與軸相切于點B.
(1)當=2是,求⊙P的半徑;
(2)求關于的函數(shù)解析式,在圖②中畫出此函數(shù)圖像;
(3)請類比圓的定義(圓可以看成是到定點的距離等于定長的所有點的集合),給(2)中所得函數(shù)圖像進行定義:此函數(shù)圖像可以看成是到 的距離等于到 的距離的所有點的集合;
(4)當⊙P的半徑為1時,若⊙P與以上(2)中所得函數(shù)圖象相交于點C、D,其中交點D(,)在點C的右側,請利用圖②,則cos∠APD= .
【答案】(1)圓P的半徑為1.25 ;(2)y= (x﹣1)2+1,圖象詳見解析;(3)點A, x軸;(4)cos∠APD= = ﹣2+.
【解析】
(1)根據(jù)兩點間距離公式列式計算即可;
(2)同(1)列出式子并整理,可得y=(x﹣1)2+1,然后描點畫圖即可;
(3)由(x﹣1)2+(y﹣2)2=y2可知此函數(shù)圖像可以看成是到點A的距離等于到x軸的距離的所有點的集合;
(4)連接CD,連接AP并延長,交x軸于點F,設PE=a,用a表示出D點坐標,代入到拋物線解析式求出a的值,
解:(1)由x=2,得到P(2,y),
連接AP,PB,
∵圓P與x軸相切,
∴PB⊥x軸,即PB=y,
由AP=PB,得到 ,
解得:y=1.25 ,則圓P的半徑為1.25 ;
(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,
整理得:y= (x﹣1)2+1,即圖象為開口向上的拋物線,
畫出函數(shù)圖象,如圖②所示;
(3)由(x﹣1)2+(y﹣2)2=y2可知此函數(shù)圖像可以看成是到點A的距離等于到x軸的距離的所有點的集合;
(4)連接CD,連接AP并延長,交x軸于點F,
設PE=a,則有EF=a+1,ED= ,
∴D坐標為( ,a+1),
代入拋物線解析式得:a+1= 0.25(1﹣a2)+1,
解得:a=﹣2+或a=﹣2﹣ (舍去),即PE=﹣2+ ,
在Rt△PED中,PE=﹣2+,PD=1,
則cos∠APD=﹣2+.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側),已知A點的縱坐標是2:
(1)求反比例函數(shù)的表達式;
(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎電動車從B地到A地,到達A地后立即按原路返回,如圖是甲、乙兩人離B地的距離y(km)與行駛時x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:
(1)寫出A、B兩地之間的距離;
(2)直接寫出y甲、y乙與x之間的函數(shù)關系式,請求出點M的坐標,并解釋該點坐標所表示的實際意義;
(3)若兩人之間保持的距離不超過3km時,能夠用無線對講機保持聯(lián)系,請直接寫出甲、乙兩人能夠用無線對講機保持聯(lián)系時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB,AD是⊙O的弦,AO平分.過點B作⊙O的切線交AO的延長線于點C,連接CD,BO.延長BO交⊙O于點E,交AD于點F,連接AE,DE.
(1)求證:是⊙O的切線;
(2)若,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學為了解本校學生對“掃黑除惡專項斗爭”的了解程度,在全校范圍內隨機抽查了部分學生,將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中提供的信息,解答下列問題:
(1)在本次抽樣調查中,共抽取了 名學生.
(2)在扇形統(tǒng)計圖中,“不了解”部分所對應的圓心角的度數(shù)為 .
(3)補全條形統(tǒng)計圖.
(4)若該校有2000名學生,根據(jù)調查結果,對“掃黑除惡專項斗爭”“了解一點”的學生人數(shù)約為多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的兩個實數(shù)根.
(1)是否存在實數(shù)a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,請你說明理由;
(2)求使(x1+1)(x2+1)為正整數(shù)的實數(shù)a的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,某超市從一樓到二樓有一自動扶梯,圖2是側面示意圖.已知自動扶梯AB的坡度為1:2.4,AB的長度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動扶梯頂端B點正上方的一點,BC⊥MN,在自動扶梯底端A處測得C點的仰角為42°,求二樓的層高BC約為多少米?( sin42°≈0.7,tan42°≈0.9)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+1的圖象交x軸于A(﹣2,0),B(1,0)兩點,交y軸于點C,點D是第四象限內拋物線上的一個動點,過點D作DE∥y軸交x軸于點E,線段CB的延長線交DE于點M,連接OM,BD交于點N.
(1)求二次函數(shù)的表達式;
(2)當S△OEM=S△DBE時,求點D的坐標及sin∠DAE的值;
(3)在(2)的條件下,點P是x軸上一個動點,求的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,且AB=10,弦MN的長為8,若弦MN的兩端在圓周上滑動,始終與AB相交.記點A,B到MN的距離分別為h1,h2,則|h1﹣h2|等于_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com