【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側(cè)),已知A點的縱坐標(biāo)是2:
(1)求反比例函數(shù)的表達式;
(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達式.
【答案】(1)y= ;(2)y=﹣x+;
【解析】
(1)根據(jù)已知條件y=﹣x經(jīng)過點A,且A點的縱坐標(biāo)是2,求得點A的坐標(biāo),再把點A的坐標(biāo)代入y=求得k值,即可求得反比例函數(shù)的解析式;(2)如圖,過F作FD⊥AB于D,過A作AE⊥x軸,則∠FDO=∠OEA=90°,結(jié)合A(﹣4,2)可得AE=2,OE=4,AO=2,由此可得AB=2AO=4,根據(jù)三角形的面積公式求得DF==3,再證明△AOE∽△OFD,根據(jù)相似三角形的性質(zhì)求得OF=,即可求得點F的坐標(biāo),設(shè)平移后的直線l2的函數(shù)表達式為y=﹣x+b,把點F的坐標(biāo)代入即可求得b值,從而求得直線l2的函數(shù)表達式.
(1)直線l1:y=﹣x經(jīng)過點A,且A點的縱坐標(biāo)是2,
∴令y=2,則x=﹣4,
即A(﹣4,2),
∵反比例函數(shù)y=的圖象經(jīng)過A點,
∴k=﹣4×2=﹣8,
∴反比例函數(shù)的表達式為y=﹣;
(2)如圖,過F作FD⊥AB于D,過A作AE⊥x軸,則∠FDO=∠OEA=90°,
∴AE=2,OE=4,AO=2,
∴AB=2AO=4,
∵直線l1與直線l2平行,△ABC的面積為30,
∴AB×DF=30,即×4×DF=30,
∴DF=3,
∵∠EOF=90°,
∴∠AOE+∠DOF=90°=∠OFD+∠DOF,
∴∠AOE=∠OFD,
∴△AOE∽△OFD,
∴=,即=,
∴FO=,
即F(0,),
設(shè)平移后的直線l2的函數(shù)表達式為y=﹣x+b,則
=0+b,
∴b=,
∴平移后的直線l2的函數(shù)表達式為y=﹣x+.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;
(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某氣球內(nèi)充滿一定質(zhì)量的氣體,當(dāng)溫度不變時,氣球內(nèi)氣體的氣壓p(kPa)是氣體體積V(m3)的反比例函數(shù),其圖象如圖所示.
(1)寫出這一函數(shù)的表達式.
(2)當(dāng)氣體體積為1 m3時,氣壓是多少?
(3)當(dāng)氣球內(nèi)的氣壓大于140 kPa時,氣球?qū)⒈?/span>,為了安全考慮,氣體的體積應(yīng)不小于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設(shè)每件商品降價元。據(jù)此規(guī)律,請回答:
(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。
(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀并解決問題.
對于形如這樣的二次三項式,可以用公式法將它分解成 的形式.但對于二次三項式,就不能直接運用公式了.此時,我們可以在二次三項式中先加上一項 ,使它與的和成為一個完全平方式,再減去,整個式子的值不變,于是有:
像這樣,先添﹣適當(dāng)項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.
(1)利用“配方法”分解因式:.
(2)若 a b 5 , ab 6 ,求:①;② 的值.
(3)已知 x 是實數(shù),試比較與的大小,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線,點E、N在BC上,則∠EAN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,,點E在邊BC上,,將沿DE對折至,延長EF交邊AB于點C,連接DG,BF,給出以下結(jié)論:≌;;;∽,其中所有正確結(jié)論的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細觀察下列等式:
第1個:22﹣1=1×3
第2個:32﹣1=2×4
第3個:42﹣1=3×5
第4個:52﹣1=4×6
第5個:62﹣1=5×7
…
這些等式反映出自然數(shù)間的某種運算規(guī)律.按要求解答下列問題:
(1)請你寫出第6個等式: ;
(2)設(shè)n(n≥1)表示自然數(shù),則第n個等式可表示為 ;
(3)運用上述結(jié)論,計算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“發(fā)展臍橙產(chǎn)業(yè),加快脫貧的步伐”.某臍橙種植戶新鮮采摘了20筐臍橙,以每筐25千克為標(biāo)準(zhǔn)重量,超過或不足干克數(shù)分別用正,負(fù)數(shù)來表示,記錄如下:
與標(biāo)準(zhǔn)重量的差值(單位:干克) | -3 | -2 | -1.5 | 0 | 1 | 2.5 |
筐數(shù) | 1 | 4 | 2 | 3 | 2 | 8 |
(1)與標(biāo)準(zhǔn)重量比較,20筐臍橙總計超過或不足多少千克?
(2)若臍橙毎干克售價6.5元,則出售這20筐臍橙可獲得多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com