【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2:
(1)求反比例函數(shù)的表達(dá)式;
(2)將直線(xiàn)l1:y=﹣x向上平移后的直線(xiàn)l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線(xiàn)l2的函數(shù)表達(dá)式.
【答案】(1)y= ;(2)y=﹣x+;
【解析】
(1)根據(jù)已知條件y=﹣x經(jīng)過(guò)點(diǎn)A,且A點(diǎn)的縱坐標(biāo)是2,求得點(diǎn)A的坐標(biāo),再把點(diǎn)A的坐標(biāo)代入y=求得k值,即可求得反比例函數(shù)的解析式;(2)如圖,過(guò)F作FD⊥AB于D,過(guò)A作AE⊥x軸,則∠FDO=∠OEA=90°,結(jié)合A(﹣4,2)可得AE=2,OE=4,AO=2,由此可得AB=2AO=4,根據(jù)三角形的面積公式求得DF==3,再證明△AOE∽△OFD,根據(jù)相似三角形的性質(zhì)求得OF=,即可求得點(diǎn)F的坐標(biāo),設(shè)平移后的直線(xiàn)l2的函數(shù)表達(dá)式為y=﹣x+b,把點(diǎn)F的坐標(biāo)代入即可求得b值,從而求得直線(xiàn)l2的函數(shù)表達(dá)式.
(1)直線(xiàn)l1:y=﹣x經(jīng)過(guò)點(diǎn)A,且A點(diǎn)的縱坐標(biāo)是2,
∴令y=2,則x=﹣4,
即A(﹣4,2),
∵反比例函數(shù)y=的圖象經(jīng)過(guò)A點(diǎn),
∴k=﹣4×2=﹣8,
∴反比例函數(shù)的表達(dá)式為y=﹣;
(2)如圖,過(guò)F作FD⊥AB于D,過(guò)A作AE⊥x軸,則∠FDO=∠OEA=90°,
∴AE=2,OE=4,AO=2,
∴AB=2AO=4,
∵直線(xiàn)l1與直線(xiàn)l2平行,△ABC的面積為30,
∴AB×DF=30,即×4×DF=30,
∴DF=3,
∵∠EOF=90°,
∴∠AOE+∠DOF=90°=∠OFD+∠DOF,
∴∠AOE=∠OFD,
∴△AOE∽△OFD,
∴=,即=,
∴FO=,
即F(0,),
設(shè)平移后的直線(xiàn)l2的函數(shù)表達(dá)式為y=﹣x+b,則
=0+b,
∴b=,
∴平移后的直線(xiàn)l2的函數(shù)表達(dá)式為y=﹣x+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過(guò)點(diǎn)E做直線(xiàn)l∥BC.
(1)判斷直線(xiàn)l與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若∠ABC的平分線(xiàn)BF交AD于點(diǎn)F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某氣球內(nèi)充滿(mǎn)一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓p(kPa)是氣體體積V(m3)的反比例函數(shù),其圖象如圖所示.
(1)寫(xiě)出這一函數(shù)的表達(dá)式.
(2)當(dāng)氣體體積為1 m3時(shí),氣壓是多少?
(3)當(dāng)氣球內(nèi)的氣壓大于140 kPa時(shí),氣球?qū)⒈?/span>,為了安全考慮,氣體的體積應(yīng)不小于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商場(chǎng)某種商品平均每天可銷(xiāo)售30件,每件盈利50元。為了盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件。設(shè)每件商品降價(jià)元。據(jù)此規(guī)律,請(qǐng)回答:
(1)商場(chǎng)日銷(xiāo)售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。
(2)在上述條件不變、銷(xiāo)售正常情況下,每件商品降價(jià)多少元時(shí),商場(chǎng)日盈利可達(dá)到2100元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀并解決問(wèn)題.
對(duì)于形如這樣的二次三項(xiàng)式,可以用公式法將它分解成 的形式.但對(duì)于二次三項(xiàng)式,就不能直接運(yùn)用公式了.此時(shí),我們可以在二次三項(xiàng)式中先加上一項(xiàng) ,使它與的和成為一個(gè)完全平方式,再減去,整個(gè)式子的值不變,于是有:
像這樣,先添﹣適當(dāng)項(xiàng),使式中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變的方法稱(chēng)為“配方法”.
(1)利用“配方法”分解因式:.
(2)若 a b 5 , ab 6 ,求:①;② 的值.
(3)已知 x 是實(shí)數(shù),試比較與的大小,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線(xiàn),點(diǎn)E、N在BC上,則∠EAN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,,點(diǎn)E在邊BC上,,將沿DE對(duì)折至,延長(zhǎng)EF交邊AB于點(diǎn)C,連接DG,BF,給出以下結(jié)論:≌;;;∽,其中所有正確結(jié)論的個(gè)數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】仔細(xì)觀(guān)察下列等式:
第1個(gè):22﹣1=1×3
第2個(gè):32﹣1=2×4
第3個(gè):42﹣1=3×5
第4個(gè):52﹣1=4×6
第5個(gè):62﹣1=5×7
…
這些等式反映出自然數(shù)間的某種運(yùn)算規(guī)律.按要求解答下列問(wèn)題:
(1)請(qǐng)你寫(xiě)出第6個(gè)等式: ;
(2)設(shè)n(n≥1)表示自然數(shù),則第n個(gè)等式可表示為 ;
(3)運(yùn)用上述結(jié)論,計(jì)算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“發(fā)展臍橙產(chǎn)業(yè),加快脫貧的步伐”.某臍橙種植戶(hù)新鮮采摘了20筐臍橙,以每筐25千克為標(biāo)準(zhǔn)重量,超過(guò)或不足干克數(shù)分別用正,負(fù)數(shù)來(lái)表示,記錄如下:
與標(biāo)準(zhǔn)重量的差值(單位:干克) | -3 | -2 | -1.5 | 0 | 1 | 2.5 |
筐數(shù) | 1 | 4 | 2 | 3 | 2 | 8 |
(1)與標(biāo)準(zhǔn)重量比較,20筐臍橙總計(jì)超過(guò)或不足多少千克?
(2)若臍橙毎干克售價(jià)6.5元,則出售這20筐臍橙可獲得多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com