如圖甲,MN是外的一條直線,都垂直于MN, 為垂足.對角線AC與BD相交于O點,的中點.

(1)求證是梯形的中位線.

(2)求證:.

(3)若直線MN向上移動,使點C在直線一側,A、B、D在直線另一側(如圖乙),則垂線段之間存在什么關系?寫出你的猜想并證明.+

 (1).證明:O是BD中點, 的中點

      

       是梯形的中位線----------------------------------------------------2分

      

O是BD中點,

是梯形的中位線----------------------------------------------------3分

(2).由(1)得:

      

 


-----5分

   即

(3).. -------6分

 在上點E,使AE=,過點E作EF//MN交AC于F.則易證得:

O是FG的中點.

過O作OH//MN交于H,則OH是中位線

---------------------7分

由作圖易得

---------------------8分

---------------------9分

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

29、先閱讀理解兩條正確結論,并用這兩條結論完成應用與探究.閱讀:
正確結論1.在圖甲△ABC中,如果D是AB的中點,DE∥BC交AC于點E,那么E也是AC的中點,及DE是中位線.
正確結論2.在圖乙梯形ABCD中,如果E為腰AB的中點且EF∥AD∥BC.那么F也是CD的中點,及EF是中位線.
應用:如圖丙,已知,MN是平行四邊形ABCD外的一條直線,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′為垂足.求證:AA′+CC′=BB′+DD′.
探究:如圖丁,若直線MN向上移動,使點C在直線一側,A、B、D三點在直線另一側,則垂線段AA′、BB′、CC′、DD′之間存在什么關系?先對結論進行猜想,然后加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖甲,MN是平行四邊形ABCD外的一條直線,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′為垂足.對角線AC與BD相交于O點,O′是B′D′的中點.
(1)求證:OO′是梯形AA′C′C的中位線.
(2)求證:AA′+CC′=BB′+DD′.
(3)若直線MN向上移動,使點C在直線一側,A、B、D在直線另一側(如圖乙),則垂線段AA′、BB′、CC′、DD′之間存在什么關系?寫出你的猜想并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)已知,如圖甲,MN是平行四邊形ABCD外的一條直線,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′為垂足.求證:AA′+CC′=BB''+DD′.
(2)若直線MN向上移動,使點C在直線一側,A、B、D三點在直線另一側(如圖乙),則垂線段AA′、BB′、CC′、DD′之間存在什么關系?先對結論進行猜想,然后加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖甲,MN是外的一條直線,都垂直于MN, 為垂足.對角線AC與BD相交于O點,的中點.

(1)求證是梯形的中位線.

(2)求證:.

(3)若直線MN向上移動,使點C在直線一側,A、B、D在直線另一側(如圖乙),則垂線段之間存在什么關系?寫出你的猜想并證明.+

查看答案和解析>>

同步練習冊答案