【題目】如圖,直線AB與直線CD相交于點O,EO⊥AB,OF平分∠AOC,
(1)請寫出∠EOC的余角;
(2)若∠BOC=40°,求∠EOF的度數(shù).
【答案】
(1)∠BOC、∠AOD
(2)解:∵∠BOC=40°,
∴∠AOC=180°﹣40°=140°,
∵OF平分∠AOC,
∴∠FOC= ×140°=70°,
∵EO⊥AB,
∴∠EOB=90°,
∴∠EOF=90°﹣70°=20°.
故答案為:∠BOC、∠AOD
【解析】解:(1)∠EOC的余角有∠BOC、∠AOD;
【考點精析】解答此題的關(guān)鍵在于理解角的平分線的相關(guān)知識,掌握從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線,以及對余角和補角的特征的理解,了解互余、互補是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,解決問題
平面內(nèi)的兩條直線相交和平行兩種位置關(guān)系,如圖①,若AB∥CD,點P在AB、CD外部,則有∠B=∠BOD,又因為∠BOD是△POD的外角,所以∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.
(1)將點P移到AB、CD內(nèi)部,其余條件不變,如圖②,以上結(jié)論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?請證明你的結(jié)論;
(2)在圖②中,將直線AB繞點B逆時針方向旋轉(zhuǎn)一定角度交直線CD于點Q,如圖③,能否借助(1)中的圖形與結(jié)論,找出圖③中∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)由大小相同的小立方塊搭成的幾何體如圖1,請在圖2的方格中畫出該幾何體的俯視圖和左視圖.
(2)用小立方體搭一個幾何體,使得它的俯視圖和左視圖與你在方格中所畫的一致,則這樣的幾何體最少要個小立方塊,最多要個小立方塊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標(biāo)軸的交點,AB為半圓的直徑,拋物線的解析式為y=x2﹣2x﹣3,求這個“果圓”被y軸截得的線段CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線AB:y=-x+b分別與x,y軸交于A(8,0)、B兩點,過點B的直線交x軸軸負(fù)半軸于C,且OB:OC=4:3.
(1)求點B的坐標(biāo)為 __________;
(2)求直線BC的解析式;
(3)動點M從C出發(fā)沿射線CA方向運動,運動的速度為每秒1個單位長度.設(shè)M運動t秒時,當(dāng)t為何值時△BCM為等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com