【題目】如圖所示,邊長(zhǎng)為1的正方形網(wǎng)格中,的三個(gè)頂點(diǎn)、、都在格點(diǎn)上.
(1)作關(guān)于關(guān)于軸的對(duì)稱圖形,(其中、、的對(duì)稱點(diǎn)分別是、、),并寫出點(diǎn)坐標(biāo);
(2)為軸上一點(diǎn),請(qǐng)?jiān)趫D中畫出使的周長(zhǎng)最小時(shí)的點(diǎn)(不寫畫法,保留畫圖痕跡),并直接寫出點(diǎn)的坐標(biāo).
【答案】(1);(2)
【解析】
(1)先根據(jù)點(diǎn)關(guān)于軸對(duì)稱是橫坐標(biāo)不變,縱坐標(biāo)是相反數(shù),得出對(duì)稱點(diǎn)的坐標(biāo),然后在圖上表示出點(diǎn)、、,然后連接、、即可;
(2)根據(jù)(1)中可知點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,連接與軸的交點(diǎn)即為點(diǎn),然后根據(jù)垂直平分線的性質(zhì)得出,再利用格點(diǎn)求解即可
(1)由題可知、、的坐標(biāo)分別為:、、
根據(jù)關(guān)于軸對(duì)稱是橫坐標(biāo)不變,縱坐標(biāo)是相反數(shù),
可得、、對(duì)應(yīng)的對(duì)稱點(diǎn)的坐標(biāo)為:、、
在圖上畫出各個(gè)點(diǎn)連接起來(lái)如下圖所示:
(2)如下圖所示,連接兩點(diǎn)與 軸的交點(diǎn)即為所求的點(diǎn)
∵點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)是點(diǎn)
∴
∴
∵的周長(zhǎng)
∴當(dāng)取的最小值的周長(zhǎng)最小
∴當(dāng)點(diǎn)、、在一條直線上時(shí)取的最小值
∴點(diǎn)的坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知網(wǎng)格上最小的正方形的邊長(zhǎng)為(長(zhǎng)度單位),點(diǎn)在格點(diǎn)上.
(1)直接在平面直角坐標(biāo)系中作出關(guān)于軸對(duì)稱的圖形(點(diǎn)對(duì)應(yīng)點(diǎn),點(diǎn)對(duì)應(yīng)點(diǎn));
(2)的面積為 (面積單位)(直接填空);
(3)點(diǎn)到直線的距離為 (長(zhǎng)度單位)(直接填空);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某位老師在講“實(shí)數(shù)”時(shí),畫了一個(gè)圖,即“以數(shù)軸的單位長(zhǎng)線段為邊作一個(gè)正方形,然后以原點(diǎn)為圓心,正方形的對(duì)角線長(zhǎng)為半徑畫弧交數(shù)軸于一點(diǎn)”,作這樣的圖用來(lái)說(shuō)明:
作圖:請(qǐng)你在數(shù)軸上找出對(duì)應(yīng)的點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廣場(chǎng)綠化工程中有一塊長(zhǎng)2千米,寬1千米的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖),并在這些人行通道鋪上瓷磚,要求鋪瓷磚的面積是矩形空地面積的,設(shè)人行通道的寬度為x千米,則下列方程正確的是( )
A.(2-3x)(1-2x)=1B.(2-3x)(1-2x)=1
C.(2-3x)(1-2x)=1D.(2-3x)(1-2x)=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖:點(diǎn)(1,3)在函數(shù)y=(x>0)的圖象上,矩形ABCD的邊BC在x軸上,E是對(duì)角線BD的中點(diǎn),函數(shù)y=(x>0)的圖象又經(jīng)過(guò)A、E兩點(diǎn),點(diǎn)E的橫坐標(biāo)為m,解答下列問(wèn)題:
(1)求k的值;
(2)求點(diǎn)A的坐標(biāo);(用含m代數(shù)式表示)
(3)當(dāng)∠ABD=45°時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)是1),△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問(wèn)題:
(1)試作出△ABC以A為旋轉(zhuǎn)中心,沿順時(shí)針?lè)较蛐D(zhuǎn)90°后的圖形△AB1C1;點(diǎn)B1的坐標(biāo)為 ;
(2)作△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A2B2C2;點(diǎn)B2的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形的邊在軸上,邊在軸上.把沿折疊得到,與交于點(diǎn).
(1)如圖1,求證:.
(2)如圖1,若,.寫出所在直線的解析式.
(3)如圖2,在(2)的條件下,是中點(diǎn),是直線上一動(dòng)點(diǎn),是否有最小值,若有請(qǐng)求出最小值,若沒(méi)有請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如 圖,在邊長(zhǎng)為3 cm的正方形ABCD中,點(diǎn)E為BC邊上的任意一點(diǎn),AF⊥AE,AF交CD的延長(zhǎng)線于F,則四邊形AFCE的面積為_____cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”(如圖(1)所示).圖(2)由弦圖變化得到,它是由八個(gè)全等的直角三角形拼接而成的記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若EF=4,則S1+S2+S3的值是( 。
A.32B.38C.48D.80
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com