某商場門前的臺階截面如圖所示.已知每級臺階的高度(如BE)均為0.2米.現(xiàn)將此臺階改造成供輪椅行走的斜坡,并且設(shè)計斜坡的傾斜角∠A為9°,計算從斜坡的起點(diǎn)A到臺階前最高點(diǎn)C的距離.(精確到0.1米).
(參考數(shù)據(jù):sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)
分析:過點(diǎn)C作CF⊥AB于點(diǎn)F,則可得CF=4BE=0.8米,在Rt△ACF中解出AC的長度即可.
解答:解:過點(diǎn)C作CF⊥AB于點(diǎn)F,

則CF=4BE=0.8米,
在Rt△ACF中,∠A=9°,CF=0.8米,
∵sin∠A=
CF
AC
=0.16,
∴AC=
CF
sin∠A
=
0.8
0.16
=5.0米.
答:從斜坡的起點(diǎn)A到臺階前最高點(diǎn)C的距離為5.0米.
點(diǎn)評:本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是構(gòu)造直角三角形,直角三角形的構(gòu)造往往通過作垂線來完成.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某商場門前的臺階截面如圖所示.已知每級臺階的寬度(如CD)均為30cm,高度(如BE)均為20cm.為了方便殘疾人行走,商場決定將精英家教網(wǎng)其中一個門的門前臺階改造成供輪椅行走的斜坡,并且設(shè)計斜坡的傾斜角為9度.請計算從斜坡起點(diǎn)A到臺階前的點(diǎn)B的水平距離.
(參考數(shù)據(jù):sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商場門前的臺階截面如圖所示、已知每級臺階的寬度(如CD)均為30cm,高度(如BE)均為20cm、為了方便殘疾人行走,商場決定將其中一個門的門前臺階改造成供輪椅行走的斜坡,并且設(shè)計斜坡的傾斜角為9°,則從斜坡起點(diǎn)A到臺精英家教網(wǎng)階前的點(diǎn)B的水平距離=
 
m.(參考數(shù)據(jù):sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年初中畢業(yè)升學(xué)考試(江蘇南通卷)數(shù)學(xué)(解析版) 題型:解答題

某商場門前的臺階截面如圖所示.已知每級臺階的寬度(如CD)均為30cm,高度(如BE)均為20cm.為了方便殘疾人行走,商場決定將其中一個門的門前臺階改造成供輪椅行走的斜坡,并且設(shè)計斜坡的傾斜角為9°.請計算從斜坡起點(diǎn)A到臺階前的點(diǎn)B的水平距離.(參考數(shù)據(jù):sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第7章《銳角三角函數(shù)》中考題集(38):7.6 銳角三角函數(shù)的簡單應(yīng)用(解析版) 題型:解答題

某商場門前的臺階截面如圖所示.已知每級臺階的寬度(如CD)均為30cm,高度(如BE)均為20cm.為了方便殘疾人行走,商場決定將其中一個門的門前臺階改造成供輪椅行走的斜坡,并且設(shè)計斜坡的傾斜角為9度.請計算從斜坡起點(diǎn)A到臺階前的點(diǎn)B的水平距離.
(參考數(shù)據(jù):sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)

查看答案和解析>>

同步練習(xí)冊答案