【題目】如圖,已知正方形ABCD,頂點A(1,3)、B(1,1)、C(3,1),規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移1個單位”為一次交換,如此這樣,連續(xù)經(jīng)過2016次變換后,正方形ABCD的對角線交點M的坐標變?yōu)?/span> .
【答案】(﹣2014,2)
【解析】解:∵正方形ABCD,頂點A(1,3)、B(1,1)、C(3,1). ∴對角線交點M的坐標為(2,2),
根據(jù)題意得:第1次變換后的點M的對應(yīng)點的坐標為(2﹣1,﹣2),即(1,﹣2),
第2次變換后的點M的對應(yīng)點的坐標為:(2﹣2,2),即(0,2),
第3次變換后的點M的對應(yīng)點的坐標為(2﹣3,﹣2),即(﹣1,﹣2),
第n次變換后的點M的對應(yīng)點的為:當n為奇數(shù)時為(2﹣n,﹣2),當n為偶數(shù)時為(2﹣n,2),
∴連續(xù)經(jīng)過2016次變換后,正方形ABCD的對角線交點M的坐標變?yōu)椋ī?014,﹣2).
所以答案是:(﹣2014,2).
【考點精析】認真審題,首先需要了解正方形的性質(zhì)(正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,過點E作EF∥AB,交BC于點F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當△ABC滿足什么條件時,四邊形DBFE是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司為了解員工對“六五”普法知識的知曉情況,從本公司隨機選取40名員工進行普法知識考查,對考查成績進行統(tǒng)計(成績均為整數(shù),滿分100分),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計表.解答下列問題:
組別 | 分數(shù)段/分 | 頻數(shù)/人數(shù) | 頻率 |
1 | 50.5~60.5 | 2 | a |
2 | 60.5~70.5 | 6 | 0.15 |
3 | 70.5~80.5 | b | c |
4 | 80.5~90.5 | 12 | 0.30 |
5 | 90.5~100.5 | 6 | 0.15 |
合計 | 40 | 1.00 |
(1)表中a= , b= , c=;
(2)請補全頻數(shù)分布直方圖;
(3)該公司共有員工3000人,若考查成績80分以上(不含80分)為優(yōu)秀,試估計該公司員工“六五”普法知識知曉程度達到優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,BC=15,斜邊AB的垂直平分線與∠CAB的平分線都交BC于D點,則點D到斜邊AB的距離為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解決下列問題:
(1)[﹣4.5]= , <3.5>= .
(2)若[x]=2,則x的取值范圍是;若<y>=﹣1,則y的取值范圍是 .
(3)已知x,y滿足方程組 ,求x,y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學舉辦運動會,在1500米的項目中,參賽選手在200米的環(huán)形跑道上進行,如圖記錄了跑得最快的一位選手與最慢的一位選手的跑步全過程(兩人都跑完了全程),其中x代表的是最快的選手全程的跑步時間,y代表的是這兩位選手之間的距離,下列說不合理的是( )
A. 出發(fā)后最快的選手與最慢的選手相遇了兩次
B. 出發(fā)后最快的選手與最慢的選手第一次相遇比第二次相遇的用時短
C. 最快的選手到達終點時,最慢的選手還有415米未跑
D. 跑的最慢的選手用時4′46″
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點A作AB⊥x軸,垂足為點A,過點C作CB⊥y軸,垂足為點C,兩條垂線相交于點B.
(1)線段AB,BC,AC的長分別為AB= ,BC= ,AC= ;
(2)折疊圖1中的△ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DE交AB于點D,交AC于點E,連接CD,如圖2.
請從下列A、B兩題中任選一題作答,我選擇 題.
A:①求線段AD的長;
②在y軸上,是否存在點P,使得△APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標;若不存在,請說明理由.
B:①求線段DE的長;
②在坐標平面內(nèi),是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com