【題目】如圖①,四邊形OACB為長(zhǎng)方形,A(﹣6,0),B(0,4),直線l為函數(shù)y=﹣2x﹣5的圖象.
(1)點(diǎn)C的坐標(biāo)為 ;
(2)若點(diǎn)P在直線l上,△APB為等腰直角三角形,∠APB=90°,求點(diǎn)P的坐標(biāo);
小明的思考過(guò)程如下:
第一步:添加輔助線,如圖②,過(guò)點(diǎn)P作MN∥x軸,與y軸交于點(diǎn)N,與AC的延長(zhǎng)線交于點(diǎn)M;
第二步:證明△MPA≌△NBP;
第三步:設(shè)NB=m,列出關(guān)于m的方程,進(jìn)而求得點(diǎn)P的坐標(biāo).
請(qǐng)你根據(jù)小明的思考過(guò)程,寫(xiě)出第二步和第三步的完整解答過(guò)程;
(3)若點(diǎn)P在直線l上,點(diǎn)Q在線段AC上(不與點(diǎn)A重合),△QPB為等腰直角三角形,直接寫(xiě)出點(diǎn)P的坐標(biāo).
【答案】(1)(﹣6,4);(2)(﹣5,5),見(jiàn)解析;(3)(﹣3,1)或(﹣7,9)
【解析】
(1)根據(jù)矩形的性質(zhì)可以求得.
(2)由△MPA≌△NBP列出方程即可求解.
(3)分三種情形討論①,利用圖1中即可求出.
②,利用圖2中即可求出.
③,利用圖3中即可求出.
解:(1)∵四邊形AOBC是矩形,
,
∴點(diǎn)C的坐標(biāo)為.
故答案為C.
(2)根據(jù)題意得:,
∵為等腰直角三角形,
,
,
,
,
在中,
,
,
,
設(shè),則,
,
,
解得:,
∴點(diǎn)P的坐標(biāo)為;
(3)設(shè)點(diǎn)Q的坐標(biāo)為,
分3種情況討論:
①當(dāng)時(shí),如右圖,過(guò)點(diǎn)P作軸于點(diǎn)M,點(diǎn)Q作軸于點(diǎn)N,
,
,
在中,
,
,
代入,解得:,
.
此時(shí)點(diǎn)Q不在線段AC時(shí),不合題意,舍棄.
②當(dāng)時(shí),
若點(diǎn)P在BQ上方,即為(2)的情況,此時(shí)點(diǎn)Q與點(diǎn)A重合,由于題設(shè)中規(guī)定點(diǎn)Q不與點(diǎn)A重合,故此種情況舍去;
若點(diǎn)P在BQ下方,如右圖,過(guò)點(diǎn)P作于點(diǎn)N,作軸于點(diǎn)M,
設(shè),
,
,
在中,
,
,
,
,
把P坐標(biāo)代入,得,
解得:.
此時(shí)點(diǎn)P的坐標(biāo)為;
③當(dāng)時(shí)如右圖,過(guò)點(diǎn)Q作軸于點(diǎn)M,過(guò)點(diǎn)P作垂足為N,
設(shè),
,
,
在中,
,
,
,
,
把P坐標(biāo)代入,得:,
解得:,此時(shí)點(diǎn)P的坐標(biāo)為,
綜上所述,點(diǎn)P的坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC,斜邊AB為邊向外作等邊三角形△ACD和△ABE,F為AB的中點(diǎn),連接DF,EF,∠ACB=90°,∠ABC=30°.則以下4個(gè)結(jié)論:①AC⊥DF;②四邊形BCDF為平行四邊形;③DA+DF=BE;④其中,正確的 是( 。
A.只有①②B.只有①②③C.只有③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.
(1)求證:AC是△BDE的外接圓的切線;
(2)若AD=2,AE=6,求EC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△PQN中,若∠P=∠Q+α(0°<α≤25°),則稱△PQN為“差角三角形”,且∠P是 ∠Q的“差角”.
(1)已知△ABC是等邊三角形,判斷△ABC是否為“差角三角形”,并說(shuō)明理由;
(2)在△ABC中,∠C=90°,50°≤∠B≤70°,判斷△ABC是否為“差角三角形”,若是,請(qǐng)寫(xiě)出所有的“差角”并說(shuō)明理由;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,是對(duì)角線,,,延長(zhǎng)交的延長(zhǎng)線于點(diǎn).
(1)求證:;
(2)若,求的值;
(3)過(guò)點(diǎn)作,交的延長(zhǎng)線于點(diǎn),過(guò)點(diǎn)作,交的延長(zhǎng)線于點(diǎn),連接.設(shè),點(diǎn)是直線上的動(dòng)點(diǎn),當(dāng)的值最小時(shí),點(diǎn)與點(diǎn)是否可能重合?若可能,請(qǐng)說(shuō)明理由并求此時(shí)的值(用含的式子表示);若不可能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,E為AC的中點(diǎn),AD平分∠BAC,BA:CA=2:3,AD與BE相交于點(diǎn)O,若△OAE的面積比△BOD的面積大1,則△ABC的面積是( 。
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為( )
A. 15 B. 12.5 C. 14.5 D. 17
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖a,網(wǎng)格中的每一個(gè)正方形的邊長(zhǎng)為1,△ABC為格點(diǎn)三角形,直線MN為格點(diǎn)直線(點(diǎn)A、B、C、M、N在小正方形的頂點(diǎn)上).
(1)僅用直尺在圖a中作出△ABC關(guān)于直線MN的對(duì)稱圖形△A′B′C′.
(2)如圖b,僅用直尺將網(wǎng)格中的格點(diǎn)三角形ABC的面積三等分,并將其中的一份用鉛筆涂成陰影.
(3)如圖c,僅用直尺作三角形ABC的邊AC上的高,簡(jiǎn)單說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為了吸引顧客,設(shè)置了兩種促銷方式.一種方式是:讓顧客通過(guò)轉(zhuǎn)轉(zhuǎn)盤獲得購(gòu)物券.規(guī)定顧客每購(gòu)買100元的商品,就能獲得一次轉(zhuǎn)轉(zhuǎn)盤的機(jī)會(huì),如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)100元、50元、20元的相應(yīng)區(qū)域,那么顧客就可以分別獲得100元、50元、20元購(gòu)物券,憑購(gòu)物券可以在該商場(chǎng)繼續(xù)購(gòu)物;如果指針對(duì)準(zhǔn)其他區(qū)域,那么就不能獲得購(gòu)物券.另一種方式是:不轉(zhuǎn)轉(zhuǎn)盤,顧客每購(gòu)買100元的商品,可直接獲得10元購(gòu)物券.據(jù)統(tǒng)計(jì),一天中共有1 000人次選擇了轉(zhuǎn)轉(zhuǎn)盤的方式,其中指針落在100元、50元、20元的次數(shù)分別為50次、100次、200次.
(1)指針落在不獲獎(jiǎng)區(qū)域的概率約是多少?
(2)通過(guò)計(jì)算說(shuō)明選擇哪種方式更合算?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com