已知∠AOB=30°,半徑為6cm的⊙P沿邊OA從右向左平行移動,與邊OA相切的切點記為點C.

(1)⊙P移動到與邊OB相切時(如圖),切點為D,求劣弧
CD
的長;
(2)⊙P移動到與邊OB相交于點E,F(xiàn),若EF=4
6
cm,求OC的長.
分析:(1)根據(jù)∠AOB=30°,半徑為6cm的⊙P沿邊OA從右向左平行移動,與邊OA相切的切點記為點C,利用弧長公式得出弧
CD
的長;
(2)分兩種情況分析,①當P在∠AOB內(nèi)部,根據(jù)⊙P移動到與邊OB相交于點E,F(xiàn),利用垂徑定理得出EF=4
6
cm,得出EM=2
6
cm,進而得出OC的長.
②當P在∠AOB外部,連接PF,PC,PC交EF于點N,過點P作PM⊥EF于點M,進而求出即可.
解答:解:(1)如圖1,連接PD、PC.
∵∠AOB=30°,半徑為6cm的⊙P沿邊OA從右向左平行移動,與邊OA相切的切點記為點C.
∴∠DPC=150°,
∴劣弧
CD
的長為:
150π×6
180
=5πcm;

(2)可分兩種情況,
①如圖2,當P在∠AOB內(nèi)部,連接PE,PC,過點P做PM⊥EF于點M,延長CP交OB于點N,
∵EF=4
6
cm,
∴EM=2
6
cm,
在Rt△EPM中,PM=
PE2-EM2
=
62-(2
6
)2
=2
3
cm,
∵∠AOB=30°,
∴∠PNM=60°,
∴PN=
PM
sin60°
=
2
3
3
2
=4,
∴NC=PN+PC=4+6=10cm,
在Rt△OCN中,OC=NC×cot30°=10
3
cm.
②如圖3,當P在∠AOB外部,連接PF,PC,PC交EF于點N,過點P作PM⊥EF于點M,
由①可知,PN=3cm,
∴NC=PC-PN=3cm,
在Rt△OCN中,OC=OC=NC×cot30°=3
3
cm.
綜上所述,OC的長為10
3
cm或3
3
cm.
點評:此題主要考查了直線與圓的位置關系以及垂徑定理和弧長計算公的應用.解答(2)題時,對于動點問題,要分類討論,以防漏解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知∠AOB=30°,點P在∠AOB的內(nèi)部,P′與P關于OA對稱,P″與P關于OB對稱,則△OP′P″一定是一個
等邊
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知∠AOB=30°,點P在∠AOB內(nèi)部,P1與P關于OB對稱,P2與P關于OA對稱,則P1,O,P2三點構成的三角形是
等邊
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知∠AOB=30°,將∠AOB繞點O逆時針旋轉60°后得到∠EOF,則∠EOF=
30°
30°
.(填度數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,E,O,A三點共線,OB平分∠AOC,∠DOC=2∠EOD,已知∠AOB=30°,則∠EOD的度數(shù)為
40°
40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知∠AOB=30°,點P在∠AOB的內(nèi)部,P1與P關于0B對稱,P2與P關于OA對稱,則∠P1PP2的度數(shù)是( 。

查看答案和解析>>

同步練習冊答案