操作發(fā)現(xiàn)
將一副直角三角板如圖①擺放,能夠發(fā)現(xiàn)等腰直角三角板ABC的斜邊與含30°角的直角三角板DEF的長直角邊DE重合.
問題解決
將圖①中的等腰直角三角板ABC繞點B順時針旋轉(zhuǎn)30°,點C落在BF上,AC與BD交于點O,連接CD,如圖②.
(1)求證:△CDO是等腰三角形;
(2)若DF=8,求AD的長.

【答案】分析:(1)根據(jù)題意可得BC=DE,進而得到∠BDC=∠BCD,再根據(jù)三角形內(nèi)角和定理計算出度數(shù),然后再根據(jù)三角形內(nèi)角與外角的性質(zhì)可得∠DOC=∠DBC+∠BCA,進而算出度數(shù),根據(jù)角度可得△CDO是等腰三角形;
(2)作AG⊥BC,垂足為點G,DH⊥BF,垂足為點H,首先根據(jù)∠F=60°,DF=8,可以算出DH=4,HF=4,DB=8,BF=16,進而得到BC=8,再根據(jù)等腰三角形的性質(zhì)可得BG=AG=4,證明四邊形AGHD為矩形,根據(jù)線段的和差關(guān)系可得AD長.
解答:解;(1)由圖①知BC=DE,∴∠BDC=∠BCD,
∵∠DEF=30°,
∴∠BDC=∠BCD=75°,
∵∠ACB=45°,
∴∠DOC=30°+45°=75°,
∴∠DOC=∠BDC,
∴△CDO是等腰三角形;

(2)作AG⊥BC,垂足為點G,DH⊥BF,垂足為點H,
在Rt△DHF中,∠F=60°,DF=8,∴DH=4,HF=4,
在Rt△BDF中,∠F=60°,DF=8,∴DB=8,BF=16,
∴BC=BD=8,
∵AG⊥BC,∠ABC=45°,
∴BG=AG=4,
∴AG=DH,
∵AG∥DH,
∴四邊形AGHD為矩形,
∴AD=GH=BF-BG-HF=16-4-4=12-4
點評:此題主要考查了等腰三角形的判定與性質(zhì),矩形的判定與性質(zhì),以及三角函數(shù)的應(yīng)用,關(guān)鍵是掌握如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•威海)操作發(fā)現(xiàn)
將一副直角三角板如圖①擺放,能夠發(fā)現(xiàn)等腰直角三角板ABC的斜邊與含30°角的直角三角板DEF的長直角邊DE重合.
問題解決
將圖①中的等腰直角三角板ABC繞點B順時針旋轉(zhuǎn)30°,點C落在BF上,AC與BD交于點O,連接CD,如圖②.
(1)求證:△CDO是等腰三角形;
(2)若DF=8,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

操作發(fā)現(xiàn)
將一副直角三角板如圖①擺放,能夠發(fā)現(xiàn)等腰直角三角板ABC的斜邊與含30°角的直角三角板DEF的長直角邊DE重合.
問題解決
將圖①中的等腰直角三角板ABC繞點B順時針旋轉(zhuǎn)30°,點C落在BF上,AC與BD交于點O,連接CD,如圖②.
(1)求證:△CDO是等腰三角形;
(2)若DF=8,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

操作發(fā)現(xiàn)

將一副直角三角板如圖(1)擺放,能夠發(fā)現(xiàn)等腰直角三角板ABC的斜邊BC與含30°角的直角三角板DEF的長直角邊DE重合.

問題解決

將圖(1)中的等腰直角三角板ABC繞點B順時針旋轉(zhuǎn)30°,點C落在BF上.ACBD交于點O,連接CD,如圖(2).

(1)求證:△CDO是等腰三角形;

(2)若DF=8,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

操作發(fā)現(xiàn)

將一副直角三角板如圖(1)擺放,能夠發(fā)現(xiàn)等腰直角三角板ABC的斜邊BC與含30°角的直角三角板DEF的長直角邊DE重合.

第20題圖(1)

問題解決

將圖(1)中的等腰直角三角板ABC繞點B順時針旋轉(zhuǎn)30°,點C落在BF上.ACBD交于點O,連接CD,如圖(2).

 (1)求證:△CDO是等腰三角形;

(2)若DF=8,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案