【題目】如圖,矩形紙片,,點(diǎn)邊上,將沿折疊,點(diǎn)落在點(diǎn)處,分別交于點(diǎn),且,則的值為(

A.B.C.D.

【答案】C

【解析】

根據(jù)折疊的性質(zhì)可得出DC=DE、CP=EP,由∠EOF=BOP、∠B=EOP=OF可得出OEFAOBP(AAS)根據(jù)全等三角形的性質(zhì)可得出0E=OB、EF=BP,設(shè)EF=x,則BP=x、DF=4-x、BF=PC=3-x,進(jìn)而可得出AF=1+x,在RtDAF中,利用勾股定理可求出x的值,再利用余弦的定義即可求出cosADF的值.

解:∵矩形紙片,點(diǎn)邊上,將沿折疊,點(diǎn)落在點(diǎn)處,

根據(jù)折疊性質(zhì),可得:△DCP≌△DEP,
.DC=DE=4,CP=EP
在△OEF和△OBP

∴△OEF≌△OBP(AAS)

ОE=OB,EF=ВР.
設(shè)EF=x,BP=x,DF=DE-EF=4-X,
又∵BF=OB+OF=OE+OP=PE=PC,РС=ВC-BP=3-x,
AF=AB-BF=1+x.
RtDAF中,AF2+AD2=DF2,即(1+x)2+32=(4-x)2
解得:x=

DF=4-x=

cosADF=
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016廣西柳州市)如圖,ABABC外接圓⊙O的直徑,點(diǎn)P是線段CA延長(zhǎng)線上一點(diǎn),點(diǎn)E在圓上且滿足=PAPC,連接CE,AE,OEOECA于點(diǎn)D

(1)求證:PAE∽△PEC;

(2)求證:PE為⊙O的切線;

(3)若∠B=30°,AP=AC,求證:DO=DP

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道平行四邊形有很多性質(zhì).

現(xiàn)在如果我們把平行四邊形沿著它的一條對(duì)角線翻折,會(huì)發(fā)現(xiàn)這其中還有更多的結(jié)論.

(發(fā)現(xiàn)與證明)ABCD中,AB≠BC,將△ABC沿AC翻折至△AB′C,連結(jié)B′D.

結(jié)論1B′D∥AC;

結(jié)論2△AB′CABCD重疊部分的圖形是等腰三角形.

……

請(qǐng)利用圖1證明結(jié)論1或結(jié)論2(只需證明一個(gè)結(jié)論).

(應(yīng)用與探究)在ABCD中,已知∠B=30°,將△ABC沿AC翻折至△AB′C,連結(jié)B′D.

1)如圖1,若,則∠ACB= °BC= ;

2)如圖2,,BC=1AB′與邊CD相交于點(diǎn)E,求△AEC的面積;

3)已知,當(dāng)BC長(zhǎng)為多少時(shí),是△AB′D直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形OBCD中,OB1,相鄰兩內(nèi)角之比為12,將菱形OBCD繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到菱形OBCD視為一次旋轉(zhuǎn),則菱形旋轉(zhuǎn)45次后點(diǎn)C的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形ABCD中,對(duì)角線ACBD交于點(diǎn)O,E是邊AD上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A,D不重合),連接EO并延長(zhǎng),交BC于點(diǎn)F,連接BEDF.下列說(shuō)法:

對(duì)于任意的點(diǎn)E,四邊形BEDF都是平行四邊形;

當(dāng)∠ABC>90°時(shí),至少存在一個(gè)點(diǎn)E,使得四邊形BEDF是矩形;

當(dāng)AB<AD時(shí),至少存在一個(gè)點(diǎn)E,使得是四邊形BEDF是菱形;

當(dāng)∠ADB=45°時(shí),至少存在一個(gè)點(diǎn)E,使得是四邊形BEDF是正方形.

所有正確說(shuō)法的序號(hào)是:_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直立于地面上的電線桿AB,在陽(yáng)光下落在水平地面和坡面上的影子分別是BC、CD,測(cè)得BC=6米,CD=4米,BCD=150°,在D處測(cè)得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形臺(tái)球桌面ABCD上有兩個(gè)球P,QPQAB,球P連續(xù)撞擊臺(tái)球桌邊AB,BC反射后,撞到球Q.已知點(diǎn)M,N是球在ABBC邊的撞擊點(diǎn),PQ=4,∠MPQ=30,且點(diǎn)PAB邊的距離為3,則四邊形PMNQ的周長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線G有最低點(diǎn)。

1)求二次函數(shù)的最小值(用含m的式子表示);

2)將拋物線G向右平移m個(gè)單位得到拋物線G1。經(jīng)過(guò)探究發(fā)現(xiàn),隨著m的變化,拋物線G1頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間存在一個(gè)函數(shù)關(guān)系,求這個(gè)函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

3)記(2)所求的函數(shù)為H,拋物線G與函數(shù)H的圖像交于點(diǎn)P,結(jié)合圖像,求點(diǎn)P的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有若干個(gè)僅顏色不同的紅球和黑球,現(xiàn)往一個(gè)不透明的袋子里裝進(jìn)2個(gè)紅球和3個(gè)黑球.

1)隨機(jī)摸出一個(gè)球是黑球的概率為   ;若先從袋子里取出m個(gè)紅球(不放回),再?gòu)拇永镫S機(jī)摸出一個(gè)球,將“摸到黑球”記為事件A.若事件A為必然事件,則m   ;

2)若先從袋子里摸出一個(gè)球,放回后再摸出一個(gè)球,用列表法或畫(huà)樹(shù)狀圖法求出兩次摸出的球顏色不同的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案