【題目】如圖,已知在中,,點的中點,連結并延長,與的延長線相交于點,連結.若,則四邊形的面積是_________

【答案】20

【解析】

ASA證明△ADE≌△BFE,得出BF=AD,DE=FE,證出四邊形AFBD是菱形,在RtBDE中,由三角函數(shù)得出DE=2BE,設BE=x,則DE=2x,由勾股定理得出方程,解方程求出,得出AB=2BE=2,DF=2DE=4BE=4,再由菱形面積公式即可得出結果.

∵四邊形ABCD是平行四邊形,
AD=BC=5ABCD,ADBC,
∴∠BDC=DBE,∠ADE=BFE,
BD=BC=5
AD=BD=5,
∵點EAB的中點,
DEAB,AE=BE,
AF=BF,
在△ADE和△BFE中,


∴△ADE≌△BFEASA),
BF=AD,DE=FE,
AD=BD=BF=AF,
∴四邊形AFBD是菱形,
RtBDE中,tanDBE=tanBDC=2,

,

DE=2BE,
BE=,則DE=
由勾股定理得:+=,即+=
解得:

AB=2BE=2,DF=2DE=4BE=4,

∴四邊形AFBD的面積=;
故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等,交易其一,金輕十三兩,問金、銀一枚各重幾何?”意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相同,兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計),問黃金、白銀每枚各種多少兩?設黃金重兩,每枚白銀重兩,根據(jù)題意可列方程組為____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若拋物線軸相交于兩點,與軸相交于點,直線經(jīng)過點,

1)求拋物線的解析式;

2)點是直線下方拋物線上一動點,過點軸于點,交于點,連接

①線段是否有最大值?如果有,求出最大值;如果沒有,請說明理由;

②在點運動的過程中,是否存在點,恰好使是以為腰的等腰三角形?如果存在,請直接寫出點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場第一次用11000元購進某款拼裝機器人進行銷售,很快銷售一空,商家又用24000元第二次購進同款機器人,所購進數(shù)量是第一次的2倍,但單價貴了10元.

1)求該商家第一次購進機器人多少個?

2)若在這兩次機器人的銷售中,該商場全部售完,而且售價都是130元,問該商場總共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的直徑,弦CDAB,垂足為H,連結AC,過上一點E作EGAC交CD的延長線于點G,連結AE交CD于點F,且EG=FG,連結CE.

(1)求證:ECF∽△GCE;

(2)求證:EG是O的切線;

(3)延長AB交GE的延長線于點M,若tanG=,AH=,求EM的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關系.

【發(fā)現(xiàn)證明】小聰把ABE繞點A逆時針旋轉90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°AB=AD,B+D=180°,點E、F分別在邊BCCD上,則當∠EAF與∠BAD滿足  關系時,仍有EF=BE+FD;請證明你的結論.

【探究應用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°ADC=120°,BAD=150°,道路BC、CD上分別有景點E、F,且AEAD,DF=401米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結果取整數(shù),參考數(shù)據(jù): =1.41, =1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:

售價x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

1)求yx之間的函數(shù)表達式;

2)設商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?

3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,,以為直徑的圓交于點,過點的⊙的切線交于點,則⊙的半徑是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,AB為⊙O的直徑,AB=10,AC=6,連結OC,弦AD分別交OC,BC于點EF,其中點EAD的中點.

1)求證:∠CAD=CBA

2)求OE的長.

查看答案和解析>>

同步練習冊答案