精英家教網 > 初中數學 > 題目詳情

【題目】一元二次方程x2﹣8x﹣1=0配方后可變形為( )
A.(x+4)2=17
B.(x﹣4)2=17
C.(x+4)2=15
D.(x﹣4)2=15

【答案】B
【解析】解:∵x2﹣8x﹣1=0,
∴x2﹣8x=1,
∴x2﹣8x+16=1+16,即(x﹣4)2=17,
故選:B.
先移項,再兩邊配上一次項系數一半的平方可得.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為了維護海洋權益,新組建的國家海洋局加大了在南海的巡邏力度。一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時發(fā)現一艘不明國籍的船只停在C處海域。如圖所示,AB=60海里,在B處測得C在北偏東45的方向上,A處測得C在北偏西30的方向上,在海岸線AB上有一燈塔D,測得AD=120海里。

(1)(4分)分別求出A與C及B與C的距離AC,BC(結果保留根號)

(2)(5分)已知在燈塔D周圍100海里范圍內有暗礁群,我在A處海監(jiān)船沿AC前往C處盤查,途中有無觸礁的危險?(參考數據:=1.41,=1.73,=2.45)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】仔細觀察下面的正四面體、正六面體、正八面體,解決下列問題:

⑴填空:

①正四面體的頂點數V ,面數F ,棱數E .

②正六面體的頂點數V ,面數F ,棱數E .

③正八面體的頂點數V ,面數F ,棱數E .

⑵若將多面體的頂點數用V表示,面數用F表示,棱數用E表示,則V、FE之間的數量關系可用一個公式來表示,這就是著名的歐拉公式,請寫出歐拉公式:

⑶如果一個多面體的棱數為30,頂點數為20,那么它有多少個面?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,點G是BC延長線上一點,連結AG,分別交BD、CD于點E、F,連結CE.

(1)求證:∠DAE=∠DCE;

(2)當CE=2EF時,EG與EF的等量關系是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】愛心一日捐活動中,某校初三級部六個班的捐款數(單位:元)分別為520,460,480560,580600,則這組數據的極差是_________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2016湖南省岳陽市第24題)如圖,直線y=x+4交于x軸于點A,交y軸于點C,過A、C兩點的拋物線F1交x軸于另一點B(1,0).

(1)求拋物線F1所表示的二次函數的表達式;

(2)若點M是拋物線F1位于第二象限圖象上的一點,設四邊形MAOC和BOC的面積分別為S四邊形MAOC和SBOC,記S=S四邊形MAOCSBOC,求S最大時點M的坐標及S的最大值;

(3)如圖,將拋物線F1沿y軸翻折并復制得到拋物線F2,點A、B與(2)中所求的點M的對應點分別為A、B、M,過點M作MEx軸于點E,交直線AC于點D,在x軸上是否存在點P,使得以A、D、P為頂點的三角形與ABC相似?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2016廣東省深圳市第23題)如圖,拋物線軸交于A、B兩點,且B(1 , 0)。

(1)、求拋物線的解析式和點A的坐標;

(2)、如圖1,點P是直線上的動點,當直線平分APB時,求點P的坐標;

(3)如圖2,已知直線 分別與 交于C、F兩點。點Q是直線CF下方的拋物線上的一個動點,過點Q作 軸的平行線,交直線CF于點D,點E在線段CD的延長線上,連接QE。問以QD為腰的等腰QDE的面積是否存在最大值?若存在,請求出這個最大值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果將拋物線y=x2+2先向左平移1個單位,再向下平移2個單位,那么所得新拋物線的表達式是(
A.y=(x﹣1)2
B.y=(x+1)2
C.y=x2+1
D.y=x2+3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列運算正確的是( 。
A.x3x2=x6
B.(ab)2=ab2
C.a6+a6=a12
D.b2+b2=2b2

查看答案和解析>>

同步練習冊答案