精英家教網 > 初中數學 > 題目詳情

【題目】在某飛機場東西方向的地面l上有一長為1km的飛機跑道MN(如圖),在跑道MN的正西端14.5千米處有一觀察站A.某時刻測得一架勻速直線降落的飛機位于點A的北偏西30°,且與點A相距15千米的B處;經過1分鐘,又測得該飛機位于點A的北偏東60°,且與點A相距5 千米的C處.

(1)該飛機航行的速度是多少千米/小時?(結果保留根號)
(2)如果該飛機不改變航向繼續(xù)航行,那么飛機能否降落在跑道MN之間?請說明理由.

【答案】
(1)

解:由題意,得∠BAC=90°,

∴BC= =10 ,

∴飛機航行的速度為:10 ×60=600 (km/h)


(2)

解:能;作CE⊥l于點E,設直線BC交l于點F.

在Rt△ABC中,AC=5 ,BC=10 ,

∴∠ABC=30°,即∠BCA=60°,

又∵∠CAE=30°,∠ACE=∠FCE=60°,

∴CE=ACsin∠CAE= ,

AE=ACcos∠CAE=

則AF=2AE=15(km),

∴AN=AM+MN=14.5+1=15.5km,

∵AM<AF<AN,

∴飛機不改變航向繼續(xù)航行,可以落在跑道MN之間.


【解析】(1)先求出∠BAC=90°,然后利用勾股定理列式求解即可得到BC,再求解即可;(2)作CE⊥l于E,設直線BC交l于F,然后求出CE、AE,然后求出AF的長,再進行判斷即可.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線的表達式為,AB的坐標分別為

(1,0),(0,2),直線AB與直線相交于點P

(1)求直線AB的表達式;

(2)求點P的坐標;

(3)若直線上存在一點C,使得APC的面積是APO的面積的2倍,直接寫出點C的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是某工廠貨物傳送帶的平面示意圖,為提高傳送過程的安全性,工廠計劃改造傳動帶與地面的夾角,使其AB的坡角由原來的43°改為30°.已知原傳送帶AB長為5米.求新舊貨物傳送帶著地點B、C之間相距多遠?(結果保留整數,參考數據:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93, ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,點F在CD上,且CF:DF=1:2,則SCEF:SABCD=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某樓盤要對外銷售該樓盤共23層,銷售價格如下:第八層樓房售價為4000,從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,

請寫出售價與樓層x取整數之間的函數關系式.

已知該樓盤每套樓房面積均為100,若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:

方案一:降價,另外每套樓房總價再減a元;

方案二:降價

老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計算哪種優(yōu)惠方案更加合算.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,經過原點的拋物線y=﹣x2+2mx(m>0)與x軸的另一個交點為A.過點P(1,m)作直線PM⊥x軸于點M,交拋物線于點B,記點B關于拋物線對稱軸的對稱點為C(點B,點C不重合).連接CB,CP.

(1)當m= 時,求點A的坐標及BC的長;
(2)當m>1時,連接CA,當CA⊥CP時,求m的值;
(3)過點P作PE⊥PC且PE=PC,問是否存在m,使得點E恰好落在坐標軸上?若存在,請直接寫出所有滿足條件的點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在直角三角形中,,點EF分別在邊AB、AC上,將沿著直線EF折疊,使得A點恰好落在BC邊上的D點處,且

求證:四邊形AFDE是菱形.

,,求線段ED的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為豐富學生的校園生活,某校舉行“與愛同行”朗誦比賽,賽后整理參賽同學的成績,繪制成如下不完整的統計圖表,請根據圖表中的信息解答下列問題.

組別

成績x(分)

頻數(人數)

A

8.0≤x<8.5

a

B

8.5≤x<9.0

8

C

9.0≤x<9.5

15

D

9.5≤x<10

3


(1)圖中a= , 這次比賽成績的眾數落在組;
(2)請補全頻數分布直方圖;
(3)學校決定選派本次比賽成績最好的3人參加全市中學生朗誦比賽,并為參賽選手準備了2件白色、1件藍色上衣和黑色、藍色、白色的褲子各1條,小軍先選,他從中隨機選取一件上衣和一條褲子搭配成一套衣服,請用畫樹狀圖法或列表法求出上衣和褲子搭配成不同顏色的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解南山荔枝的銷售情況,某部門對該市場的三種荔枝品種A,B,C在6月上半月的銷售進行調查統計,繪制成如下兩個統計圖(均不完整),請你結合圖中的信息,解答下列問題:
(1)該市場6月上半月共銷售這三種荔枝多少噸?
(2)補全圖1的統計圖并計算圖2中A所在扇形的圓心角的度數;
(3)某商場計劃六月下半月進貨A、B、C三種荔枝共300千克,根據該市場6月上半月的銷售情況,求該商場應購進C品種荔枝多少千克比較合理?

查看答案和解析>>

同步練習冊答案