【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出以下結(jié)論:abc0 b24ac0 4b+c0 若B(﹣y1)、C,y2)為函數(shù)圖象上的兩點,則y1y2當(dāng)﹣3≤x≤1時,y≥0,

其中正確的結(jié)論是(填寫代表正確結(jié)論的序號)__________________

【答案】②③⑤

【解析】解:由圖象可知,a0,b0c0,abc0,故錯誤.

拋物線與x軸有兩個交點,b2﹣4ac0,故正確.

拋物線對稱軸為x=1,與x軸交于A3,0),拋物線與x軸的另一個交點為(1,0),a+b+c=0, =1,b=2ac=3a,4b+c=8a3a=5a0,故正確.

B,y1)、C,y2)為函數(shù)圖象上的兩點,又點C離對稱軸近,y1,<y2,故錯誤,

由圖象可知,﹣3≤x≤1時,y≥0,故正確.

∴②③⑤正確,

故答案為②③⑤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O△ABC內(nèi)一點,連結(jié)OBOC,并將AB、OBOC、AC的中點D、EF、G依次連結(jié),得到四邊形DEFG

1)求證:四邊形DEFG是平行四邊形;

2)若MEF的中點,OM=3,∠OBC∠OCB互余,求DG的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的個數(shù)有( 。

①已知直角三角形的面積為2,兩直角邊的比為12,則斜邊長為;

②直角三角形的最大邊長為,最短邊長為1,則另一邊長為;

③在△ABC中,若∠A:∠B:∠C=1:56,則△ABC為直角三角形;

④等腰三角形面積為12,底邊上的高為4,則腰長為5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A10),B﹣30)兩點.

1)求該拋物線的解析式;

2)設(shè)(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標(biāo);若不存在,請說明理由;

3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標(biāo)及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小蟲從某點出發(fā)在一條直線上來回爬行,規(guī)定向右爬行的路程記為正數(shù),向左爬行的路程記為負(fù)數(shù),爬行的各段路程依次記為(單位:-11、+8、+9、-3、-6、+12、-9.

1)小蟲最后中否回到出發(fā)點,請判斷并且通過計算說明理由.

2)在爬行的過程中,如果每爬行一個單位長度獎勵一粒芝麻,則整個運動過程中小蟲一共得到多少粒芝麻?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)(操作發(fā)現(xiàn)):如圖一,在矩形ABCD中,EBC的中點,將ABE沿AE折疊后得到AFE,點F在矩形ABCD內(nèi)部,延長AFCD于點G.猜想線段GFGC的數(shù)量關(guān)系是   

2)(類比探究):如圖二,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結(jié)論是否仍然成立?請說明理由.

3)(應(yīng)用):如圖三,將(1)中的矩形ABCD改為正方形,邊長AB4,其它條件不變,求線段GC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,點A為弧BC中點,BD為直徑,過AAPBCDB的延長線于點P.

(1)求證:PA是⊙O的切線;

(2)若BC=2,AB=2,求sinABD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是小明記錄的他家上月前幾日汽車?yán)锍田@示的數(shù)據(jù).

日期

1

2

3

4

5

6

7

里程表顯示數(shù)據(jù)(公里)

1121

1147

1215

1241

1262

1289

1373

(1)求小明家平均每天汽車行駛多少公里?

(2)小明家汽車耗油量為:每百公里耗油8升,加油站汽油價格為8/升,上月按30天計算.求小明家要支付多少燃油費?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)理數(shù)學(xué)興趣小組在探究如何求tan15°的值,經(jīng)過思考、討論、交流,得到以下思路:

思路一 如圖1,在RtABC中,C=90°ABC=30°,延長CB至點D,使BD=BA,連接AD.設(shè)AC=1,則BD=BA=2BC=tanD=tan15°===

思路二 利用科普書上的和(差)角正切公式:tanα±β=.假設(shè)α=60°,β=45°代入差角正切公式:tan15°=tan60°﹣45°===

思路三 在頂角為30°的等腰三角形中,作腰上的高也可以

思路四

請解決下列問題(上述思路僅供參考).

1)類比:求出tan75°的值;

2)應(yīng)用:如圖2,某電視塔建在一座小山上,山高BC30米,在地平面上有一點A,測得A,C兩點間距離為60米,從A測得電視塔的視角(∠CAD)為45°,求這座電視塔CD的高度;

3)拓展:如圖3,直線與雙曲線交于A,B兩點,與y軸交于點C,將直線AB繞點C旋轉(zhuǎn)45°后,是否仍與雙曲線相交?若能,求出交點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案