拋物線:y=ax2+2ax+a2+2的一部分如圖所示,那么該拋物線在y軸右側(cè)與x軸交點(diǎn)的坐標(biāo)是   
【答案】分析:先把點(diǎn)(-3,0)代入y=ax2+2ax+a2+2中求出a的值,得到完整的解析式后,再利用ax2+2ax+a2+2=0解出x的值,即求出對(duì)應(yīng)的x值,可得到右側(cè)交點(diǎn)坐標(biāo).
解答:解:由圖可知點(diǎn)(-3,0)在拋物線上,
把(-3,0)代入y=ax2+2ax+a2+2中,得
9a-6a+a2+2=0,解得a=-1或a=-2;
當(dāng)a=-1時(shí),y=-x2-2x+3=-(x+3)(x-1),
設(shè)y=0,則x1=-3,x2=1,
∴在y軸右側(cè)與x軸交點(diǎn)的坐標(biāo)是(1,0);
當(dāng)a=-2時(shí),y=-2x2-4x+6=-2(x+3)(x-1),
設(shè)y=0,則x1=-3,x2=1,
∴在y軸右側(cè)與x軸交點(diǎn)的坐標(biāo)是(1,0).
∴拋物線在y軸右側(cè)與x軸交點(diǎn)的坐標(biāo)是(1,0).
點(diǎn)評(píng):熟練掌握解方程和熟悉拋物線的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、拋物線:y=ax2+2ax+a2+2的一部分如圖所示,那么該拋物線在y軸右側(cè)與x軸交點(diǎn)的坐標(biāo)是
(1,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=-
3
3
x+m(m>0)與x軸、y軸分別將于交于點(diǎn)C和點(diǎn)E,過E點(diǎn)的拋物線y=ax2+bx+c的頂點(diǎn)為D,
(1)如果△CDE恰為等邊三角形.求b的值;
(2)設(shè)拋物線交y=ax2+bx+c與x 軸的兩個(gè)交點(diǎn)分別為A(x1,0)、B(x2,0)(x1<x2),問是否存在這樣的實(shí)數(shù)m,使∠AEC=90°?如果存在,求出此時(shí)m的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知雙曲線:y=
kx
與拋物線:y=ax2+bx+c交于A(2,3)、B(m,2)、C(-3,n)三點(diǎn).
(1)求雙曲線與拋物線的解析式;
(2)在平面直角坐標(biāo)系中描出點(diǎn)A、點(diǎn)B、點(diǎn)C,并求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)一個(gè)涵洞成拋物線形,它的截面如圖.現(xiàn)測(cè)得,當(dāng)水面寬AB=1.6m時(shí),涵洞頂點(diǎn)O與水面的距離為2.4m.ED離水面的高FC=1.5m,求涵洞ED寬是多少?是否會(huì)超過1m?(提示:設(shè)涵洞所成拋物線為y=ax2(a<0))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河北)某工廠生產(chǎn)一種合金薄板(其厚度忽略不計(jì)),這些薄板的形狀均為正方形,邊長在(單位:cm)在5~50之間.每張薄板的成本價(jià)(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(jià)(單位:元)有基礎(chǔ)價(jià)和浮動(dòng)價(jià)兩部分組成,其中基礎(chǔ)價(jià)與薄板的大小無關(guān),是固定不變的.浮動(dòng)價(jià)與薄板的邊長成正比例.在營銷過程中得到了表格中的數(shù)據(jù).
薄板的邊長(cm) 20 30
出廠價(jià)(元/張) 50 70
(1)求一張薄板的出廠價(jià)與邊長之間滿足的函數(shù)關(guān)系式;
(2)已知出廠一張邊長為40cm的薄板,獲得的利潤為26元(利潤=出廠價(jià)-成本價(jià)),
①求一張薄板的利潤與邊長之間滿足的函數(shù)關(guān)系式.
②當(dāng)邊長為多少時(shí),出廠一張薄板所獲得的利潤最大?最大利潤是多少?
參考公式:拋物線:y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(-
b
2a
,
4ac-b2
4a

查看答案和解析>>

同步練習(xí)冊(cè)答案