【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標為(1,0),OC=3OB.

(1)求拋物線的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.

【答案】
(1)解:∵B(1,0),

∴OB=1;

∵OC=3BO,

∴C(0,﹣3);

∵y=ax2+3ax+c過B(1,0)、C(0,﹣3),

解這個方程組,得 ,

∴拋物線的解析式為:y= x2+ x﹣3


(2)解:過點D作DM∥y軸分別交線段AC和x軸于點M、N

在y= x2+ x﹣3中,令y=0,

得方程 x2+ x﹣3=0解這個方程,得x1=﹣4,x2=1

∴A(﹣4,0)

設(shè)直線AC的解析式為y=kx+b

,

解這個方程組,得 ,

∴AC的解析式為:y=﹣ x﹣3,

∵S四邊形ABCD=SABC+SADC

= + DM(AN+ON)

= +2DM

設(shè)D(x, x2+ x﹣3),M(x,﹣ x﹣3),DM=﹣ x﹣3﹣( x2+ x﹣3)=﹣ (x+2)2+3,

當x=﹣2時,DM有最大值3

此時四邊形ABCD面積有最大值


【解析】(1)已知了B點坐標,易求得OB、OC的長,進而可將B、C的坐標代入拋物線中,求出待定系數(shù)的值,即可得出拋物線的解析式.(2)根據(jù)A、C的坐標,易求得直線AC的解析式.由于AB、OC都是定值,則△ABC的面積不變,若四邊形ABCD面積最大,則△ADC的面積最大;可過D作x軸的垂線,交AC于M,x軸于N;得△ADC的面積是DM與OA積的一半,可設(shè)出N點的坐標,分別代入直線AC和拋物線的解析式中,即可求出DM的長,進而可得出四邊形ABCD的面積與N點橫坐標間的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求出四邊形ABCD的最大面積.
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)作△ABC的外接圓;
(2)若AC=BC,AB=8,C到AB的距離是2,求△ABC的外接圓半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3).

(1)求拋物線的解析式;
(2)若點M是拋物線在x軸下方上的動點,過點M作MN∥y軸交直線BC于點N,求線段MN的最大值;
(3)在(2)的條件下,當MN取得最大值時,在拋物線的對稱軸l上是否存在點P,使△PBN是等腰三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若△ABC的兩邊AB,AC的長是這個方程的兩個實數(shù)根.第三邊BC的長為5,當△ABC是等腰三角形時,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將Rt△ABC(其中∠B=35°,∠C=90°)繞點A按順時針方向旋轉(zhuǎn)到△AB1C1的位置,使得點C、A、B1在同一條直線上,那么旋轉(zhuǎn)角的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF. 求證:

(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF. 求證:

(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中,線段AB的兩個端點的坐標分別為A(﹣3,0),B(0,4).
(1)畫出線段AB先向右平移3個單位,再向下平移4個單位后得到的線段CD,并寫出A的對應(yīng)點D的坐標,B的對應(yīng)點C的坐標;
(2)連接AD、BC,判斷所得圖形的形狀.(直接回答,不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,AB=AC,若以點B為圓心,BC長為半徑畫弧,交腰AC于點E,則下列結(jié)論一定正確的是( )

A.AE=EC
B.AE=BE
C.∠EBC=∠BAC
D.∠EBC=∠ABE

查看答案和解析>>

同步練習(xí)冊答案