【題目】如圖1,菱形ABCD中,點(diǎn)E、F分別為AB、AD的中點(diǎn),連接CE、CF.

(1)求證:CE=CF;
(2)如圖2,若H為AB上一點(diǎn),連接CH,使∠CHB=2∠ECB,求證:CH=AH+AB.

【答案】
(1)證明:∵四邊形ABCD是菱形,

∴∠B=∠D,AB=BC=CD=AD,

∵點(diǎn)E、F分別為AB、AD的中點(diǎn),

∴BE= AB,DF= AD,

∴BE=DF,

在△BCE和△DCF中,

∴△BCE≌△DCF(SAS),

∴CE=CF


(2)證明:延長BA與CF,交于點(diǎn)G,

∵四邊形ABCD是菱形,

∴∠B=∠D,AB=BC=CD=AD,AF∥BC,AB∥CD,

∴∠G=∠FCD,

∵點(diǎn)F分別為AD的中點(diǎn),且AG∥CD,

∴AG=AB,

∵△BCE≌△DCF,

∴∠ECB=∠DCF,

∵∠CHB=2∠ECB,

∴∠CHB=2∠G,

∵∠CHB=∠G+∠HCG,

∴∠G=∠HCG,

∴GH=CH,

∴CH=AH+AG=AH+AB.


【解析】(1)由菱形ABCD中,點(diǎn)E、F分別為AB、AD的中點(diǎn),易證得△BCE≌△DCF(SAS),則可得CE=CF;(2)由平行線的性質(zhì),可得AG=AB,∠G=∠FCD,由全等三角形的對應(yīng)角相等,可得∠BCE=∠DCF,然后由∠CHB=2∠ECB,易證得∠G=∠HCG,則可得CH=GH,則可證的結(jié)果.
【考點(diǎn)精析】本題主要考查了菱形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里,裝有四個分別標(biāo)有數(shù)字﹣1,﹣2,﹣3,﹣4的小球,它們的形狀、大小、質(zhì)地等完全相同.小強(qiáng)先從盒子里隨機(jī)取出一個小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機(jī)取出一個小球,記下數(shù)字為y.
(1)用列表法或畫樹狀圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小強(qiáng)、小華各取一次小球所確定的點(diǎn)(x,y)落在一次函數(shù)y=x﹣1圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.

(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.

(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年6月份,我市某果農(nóng)收獲荔枝30噸,香蕉13噸,現(xiàn)計劃租用甲、乙兩種貨車共10輛將這批水果全部運(yùn)往深圳,已知甲種貨車可裝荔枝4噸和香蕉1噸,乙種貨車可裝荔枝香蕉各2噸;

(1)該果農(nóng)安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計出來;
(2)若甲種貨車每輛要付運(yùn)輸費(fèi)2000元,乙種貨車每輛要付運(yùn)輸費(fèi)1300元,則該果農(nóng)應(yīng)選擇哪種方案使運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點(diǎn),DE與AB交于點(diǎn)G,EF與AC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH= BD
其中正確結(jié)論的為(請將所有正確的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;

(2)如圖2,動點(diǎn)P、Q分別從A、C兩點(diǎn)同時出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動過程中,
①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動時間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,求t的值.
②若點(diǎn)P、Q的運(yùn)動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是(
A.直角三角形
B.正五邊形
C.正方形
D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為C(1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,其中點(diǎn)B的坐標(biāo)為(3,0).

(1)求拋物線的解析式;
(2)如圖2,過點(diǎn)A的直線與拋物線交于點(diǎn) E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為2,若直線PQ為拋物線的對稱軸,點(diǎn)G為直線 PQ上的一動點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G,H、F四點(diǎn)所圍成的四邊形周長最。咳舸嬖,求出這個最小值及點(diǎn)G、H的坐標(biāo);若不存在,請說明理由;
(3)如圖3,在拋物線上是否存在一點(diǎn)T,過點(diǎn)T作x軸的垂線,垂足為點(diǎn)M,過點(diǎn)M作MN∥BD,交線段AD于點(diǎn)N,連接MD,使△DNM∽△BMD?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)B,C分別在x,y軸的正半軸上,頂點(diǎn)A在反比例函數(shù)y= (k為常數(shù),k>0,x>0)的圖象上,將矩形ABOC繞點(diǎn)A按逆時針反向旋轉(zhuǎn)90°得到矩形AB′O′C′,若點(diǎn)O的對應(yīng)點(diǎn)O′恰好落在此反比例函數(shù)圖象上,則 的值是

查看答案和解析>>

同步練習(xí)冊答案