精英家教網 > 初中數學 > 題目詳情

【題目】一塊材料的形狀是銳角三角形ABC,邊BC=12cm,高AD=8cm,把它加工成矩形零件如圖,要使矩形的一邊在BC上,其余兩個頂點分別在AB,AC上.且矩形的長與寬的比為3:2,求這個矩形零件的邊長.

【答案】矩形的長為6cm,寬為4cm;或長為cm,寬為cm.

【解析】試題分析:由已知可得 BCPQ,從而有APQ∽△ABC,繼而可得,由于矩形長與寬的比為3:2,分兩種情況分別求解即可.

試題解析

四邊形PQMN是矩形,

∴BC∥PQ,

∴△APQ∽△ABC,

由于矩形長與寬的比為3:2,

分兩種情況:

PQ為長,PN為寬,

PQ=3k,PN=2k,

,

解得:k=2,

∴PQ=6cm,PN=4cm;

②PN6,PQ為寬,

PN=3k,PQ=2k,

解得:k=,

PN=cm,PQ=cm;

綜上所述:矩形的長為6cm,寬為4cm;或長為cm,寬為cm.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BE平分∠ABCAC于點E,點DAB上,DE⊥EB

1)求證:AC△BDE的外接圓的切線;

2)若AD=2,AE=6,求EC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD,AC=5,DAB=DCB=90°,則四邊形ABCD的面積為( 。

A. 15 B. 12.5 C. 14.5 D. 17

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖a,網格中的每一個正方形的邊長為1,△ABC為格點三角形,直線MN為格點直線(點A、BC、MN在小正方形的頂點上).

1)僅用直尺在圖a中作出△ABC關于直線MN的對稱圖形△A′B′C′.

2)如圖b,僅用直尺將網格中的格點三角形ABC的面積三等分,并將其中的一份用鉛筆涂成陰影.

3)如圖c,僅用直尺作三角形ABC的邊AC上的高,簡單說明你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著互聯網的發(fā)展,互聯網消費逐漸深入人們生活,如圖是“滴滴順風車”與“滴滴快車”的行駛里程x(公里)與計費y(元)之間的函數關系圖象,下列說法:

(1)“快車”行駛里程不超過5公里計費8元;

(2)“順風車”行駛里程超過2公里的部分,每公里計費1.2元;

(3)A點的坐標為(6.5,10.4);

(4)從哈爾濱西站到會展中心的里程是15公里,則“順風車”要比“快車”少用3.4元,其中正確的個數有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC在直角坐標系內的位置如圖所示.

(1)分別寫出A、B、C的坐標;

(2)請在這個坐標系內畫出A1B1C1,使A1B1C1ABC關于y軸對稱,并寫出B1的坐標;

(3)請在這個坐標系內畫出A2B2C2,使A2B2C2ABC關于原點對稱,并寫出A2的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A的坐標是(2,2),若點Px軸上,且APO是等腰三角形,則點P_____個.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場為了吸引顧客,設置了兩種促銷方式.一種方式是:讓顧客通過轉轉盤獲得購物券.規(guī)定顧客每購買100元的商品,就能獲得一次轉轉盤的機會,如果轉盤停止后,指針正好對準100元、50元、20元的相應區(qū)域,那么顧客就可以分別獲得100元、50元、20元購物券,憑購物券可以在該商場繼續(xù)購物;如果指針對準其他區(qū)域,那么就不能獲得購物券.另一種方式是:不轉轉盤,顧客每購買100元的商品,可直接獲得10元購物券.據統計,一天中共有1 000人次選擇了轉轉盤的方式,其中指針落在100元、50元、20元的次數分別為50次、100次、200.

(1)指針落在不獲獎區(qū)域的概率約是多少?

(2)通過計算說明選擇哪種方式更合算?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知,直線分別交軸于、兩點,的長滿足,點是直線上一點,且

求直線的解析式;

求過點的反比例函數解析式;

在反比例函數圖象上是否存在一點,使以點、、為頂點,為腰的四邊形為梯形?若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案