作業(yè)寶如圖,已知矩形紙片ABCD的對(duì)角線(xiàn)AC長(zhǎng)為10cm,且AB、BC的長(zhǎng)為關(guān)于x的方程x2-2(k-2)x+k2-4k+3=0的兩根,其中AB<BC.
(1)求k的值;
(2)若將矩形紙片沿圖中虛線(xiàn)折疊,點(diǎn)B恰好落在對(duì)角線(xiàn)AC上點(diǎn)F處,求折痕AE的長(zhǎng).

解:(1)∵AB、BC的長(zhǎng)為關(guān)于x的方程x2-2(k-2)x+k2-4k+3=0的兩根,AB<BC,
∴原方程可變?yōu);[x-(k-1)][x-(k-3)]=0,
解得:x1=k-1,x2=k-3,
∴BC=k-1,AC=k-3,
∴(k-1)2+(k-3)2=100,
解得:k1=9,k2=-5(不合題意舍去),
∴k的值為9;

(2)由(1)得:BC=k-1=8,AC=k-3=9-3=6,
∵將矩形紙片沿圖中虛線(xiàn)折疊,點(diǎn)B恰好落在對(duì)角線(xiàn)AC上點(diǎn)F處,
∴AB=AF=6,BE=EF,∠AFE=90°,
∴設(shè)BE=EF=x,則FC=10-6=4,EC=8-x,
∴x2+42=(8-x)2,
解得:x=3,
∴AE===3
分析:(1)首先用k表示出BC,AC的長(zhǎng),進(jìn)而利用勾股定理求出k的值;
(2)利用(1)中所求得出BE=EF=x,則FC=10-6=4,EC=8-x,利用x2+42=(8-x)2,進(jìn)而求出即可.
點(diǎn)評(píng):本題考查了折疊的性質(zhì)和矩形的性質(zhì)以及勾股定理,利用疊前后圖形的形狀和大小不變,對(duì)應(yīng)邊和對(duì)應(yīng)角相等得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,已知矩形紙片ABCD,點(diǎn)E是AB的中點(diǎn),點(diǎn)G是BC上的一點(diǎn),∠BEG=60°.現(xiàn)沿直線(xiàn)EG將紙片折疊,使點(diǎn)B落在紙片上的點(diǎn)H處,連接AH,則與∠BEG相等的角的個(gè)數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知矩形紙片ABCD,AD=2,AB=
3
,以A為圓心,AD長(zhǎng)為半徑畫(huà)弧交BC于點(diǎn)E,將扇形AED剪下圍成一個(gè)圓錐,則該圓錐的底面半徑為( 。
A、1
B、
1
2
C、
1
3
D、
1
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知矩形紙片ABCD中,AB=3,BC=6,E在矩形ABCD的邊AD上,點(diǎn)F在矩形ABCD的邊BC上,且BF=5,把矩形紙片ABCD沿EF折疊,BF的對(duì)應(yīng)線(xiàn)段FB′交邊AD于點(diǎn)G.

(1)判斷△EFG是何種特殊三角形,并證明你的結(jié)論.
(2)在折疊過(guò)程中,不重疊部分(陰影圖形)的周長(zhǎng)之和p會(huì)發(fā)生變化嗎?若不變化,請(qǐng)求出p的值;若變化,請(qǐng)說(shuō)明理由.
(3)當(dāng)△EFG是銳角三角形時(shí),求AE的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南寧)如圖,已知矩形紙片ABCD,AD=2,AB=4.將紙片折疊,使頂點(diǎn)A與邊CD上的點(diǎn)E重合,折痕FG分別與AB,CD交于點(diǎn)G,F(xiàn),AE與FG交于點(diǎn)O.
(1)如圖1,求證:A,G,E,F(xiàn)四點(diǎn)圍成的四邊形是菱形;
(2)如圖2,當(dāng)△AED的外接圓與BC相切于點(diǎn)N時(shí),求證:點(diǎn)N是線(xiàn)段BC的中點(diǎn);
(3)如圖2,在(2)的條件下,求折痕FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•安慶二模)如圖,已知矩形紙片ABCD,E是AB邊的中點(diǎn),點(diǎn)G為BC邊上的一點(diǎn),現(xiàn)沿EG將紙片折疊,使點(diǎn)B落在紙片上的點(diǎn)H處,連接AH.若AB=EG,則與∠BEG相等的角的個(gè)數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案