【題目】如圖,在△ABC中,AB=AC=2∠BAC=20°.動點P、Q分別在直線BC上運動,且始終保持∠PAQ=100°.設(shè)BP=x,CQ=y,則yx之間的函數(shù)關(guān)系用圖象大致可以表示為( )

A.B.C.D.

【答案】A

【解析】

試題根據(jù)題意,需得出xy的關(guān)系式,也就是PBCQ的關(guān)系,

∵AB=AC=2∠BAC=20°

∴△ABC是等腰三角形,∠ABC=∠ACB,三角形內(nèi)角和是180°

∴∠ABC=180°-∠BAC÷2=80°

三角形的外角等于與其不相鄰的兩個內(nèi)角之和∴∠PAB+∠P=∠ABC

∠P+∠PAB=80°,

∵∠BAC=20°,∠PAQ=100°,

∴∠PAB+∠QAC=80°

∴∠P=∠QAC,

同理可證

∠PAB=∠Q

∴△PAB∽△AQC,

, 代入得

得出,yx的關(guān)系式,由此可知,這是一個反比例函數(shù),只有選項A的圖像是反比例函數(shù)的圖像.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的內(nèi)接四邊形ABCD中,AC,BD是它的對角線,AC的中點I是△ABD的內(nèi)心.求證:

(1)OI是△IBD的外接圓的切線;

(2)AB+AD=2BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸交于兩點,與軸交于點.

1)求的取值范圍;

2)若,直線經(jīng)過點,與軸交于點,且,求拋物線的解析式;

3)若點在點左邊,在第一象限內(nèi),(2)中所得到拋物線上是否存在一點,使直線的面積為兩部分?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2ax2aa為常數(shù)且不等于0)與x軸的交點為A,B兩點,且A點在B的右側(cè).

1)當(dāng)拋物線經(jīng)過點(3,8),求a的值;

2)求A、B兩點的坐標;

3)若拋物線的頂點為M,且點Mx軸的距離等于AB3倍,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果經(jīng)銷商上月份銷售一種新上市的水果,平均售價為10/千克,月銷售量為1000千克.經(jīng)市場調(diào)查,若將該種水果價格調(diào)低至x/千克,則本月份銷售量y(千克)與x(元/千克)之間符合一次函數(shù)關(guān)系,并且得到了表中的數(shù)據(jù):

價格x(元/千克)

7

5

價格y(千克)

2000

4000

1)求yx之間的函數(shù)解析式;

2)已知該種水果上月份的成本價為5/千克,本月份的成本價為4/千克,要使本月份銷售該種水果所獲利潤比上月份增加20%,同時又要讓顧客得到實惠,那么該種水果價格每千克應(yīng)調(diào)低至多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以O為圓心的兩個同心圓中,大圓的弦AB切小圓于點C,若∠AOB=120°,則大圓半徑R與小圓半徑r之間滿足(  )

A、BR=3r

C、R=2rD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知MB=ND,∠MBA=NDC,下列哪個條件不能判定ABM≌△CDN

A.AM=CNB.AB=CD C.AMCN D.M=N

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人參加從地到地的長跑比賽,兩人在比賽時所跑的路程()與時間(分鐘)之間的函數(shù)關(guān)系如圖所示,請你根據(jù)圖象,回答下列題:

1________(填“甲”或“乙”)先到達終點;甲的速度是________/分鐘;

2)求甲與乙相遇時,他們離地多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在讀書月活動中,學(xué)校準備購買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個類別進行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根

據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次調(diào)查中,一共調(diào)查了   名同學(xué);

(2)條形統(tǒng)計圖中,m=   ,n=   

(3)扇形統(tǒng)計圖中,藝術(shù)類讀物所在扇形的圓心角是   度;

(4)學(xué)校計劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計學(xué)校購買其他類讀物多少冊比較合理?

查看答案和解析>>

同步練習(xí)冊答案