已知△ABC的三個頂點坐標如下表:
(1)將下表補充完整,并在直角坐標系中,畫出△A′B′C′;

(2)觀察△ABC與△A′B′C′,寫出有關這兩個三角形關系的一個正確結論.
【答案】分析:(1)從表中可觀察到右列的數(shù)是左列的2倍,所以根據(jù)表中左列的數(shù),都乘2填于對應的右列中.得到三點的坐標后,再根據(jù)坐標找到各點,順次連接畫出三角形;
(2)根據(jù)圖形及坐標可知△A′B′C′是△ABC放大2倍的位似圖形.
解答:解:(1)

正確寫出一個點的坐標各得(1分),
正確畫出△A′B′C′得(3分),

(2)△A′B′C′是△ABC放大2倍的位似圖形.也可寫出有關兩三角形形狀、大小、位置等關系,如△ABC∽△A′B′C′、周長比、相似比、位似比等均給.(3分)
點評:本題綜合考查了直角坐標系,位似圖形的知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標系中,已知:△ABC的三個頂點的坐標分別是A(4,6)、B(0,0)、C(6,0).
(1)求AO、AB所在直線的函數(shù)解析式;
(2)在△AOB內(nèi)可以作一個正方形CDEF,使它的三個頂點分別落在邊AO、AB上,E、F兩個頂點落在OB上,請求出這個正方形四個頂瞇的坐標,并在圖中畫出這個正方形;
(3)連接OC,在線段OC上任取一點P,過P作與x軸、y軸的不行線與OA、OB分別交于M、N兩點,過M作OB邊的垂線與OB交于H;你有什么發(fā)現(xiàn)?請寫出來,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,已知:△ABC的三個頂點的坐標分別是A(4,6)、B(0,0)、C(6,0).
(1)求AO、AB所在直線的函數(shù)解析式;
(2)在△AOB內(nèi)可以作一個正方形CDEF,使它的三個頂點分別落在邊AO、AB上,E、F兩個頂點落在OB上,請求出這個正方形四個頂瞇的坐標,并在圖中畫出這個正方形;
(3)連接OC,在線段OC上任取一點P,過P作與x軸、y軸的不行線與OA、OB分別交于M、N兩點,過M作OB邊的垂線與OB交于H;你有什么發(fā)現(xiàn)?請寫出來,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2006•黔東南州)如圖,在平面直角坐標系中,已知:△ABC的三個頂點的坐標分別是A(4,6)、B(0,0)、C(6,0).
(1)求AO、AB所在直線的函數(shù)解析式;
(2)在△AOB內(nèi)可以作一個正方形CDEF,使它的三個頂點分別落在邊AO、AB上,E、F兩個頂點落在OB上,請求出這個正方形四個頂瞇的坐標,并在圖中畫出這個正方形;
(3)連接OC,在線段OC上任取一點P,過P作與x軸、y軸的不行線與OA、OB分別交于M、N兩點,過M作OB邊的垂線與OB交于H;你有什么發(fā)現(xiàn)?請寫出來,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年貴州省黔東南州中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•黔東南州)如圖,在平面直角坐標系中,已知:△ABC的三個頂點的坐標分別是A(4,6)、B(0,0)、C(6,0).
(1)求AO、AB所在直線的函數(shù)解析式;
(2)在△AOB內(nèi)可以作一個正方形CDEF,使它的三個頂點分別落在邊AO、AB上,E、F兩個頂點落在OB上,請求出這個正方形四個頂瞇的坐標,并在圖中畫出這個正方形;
(3)連接OC,在線段OC上任取一點P,過P作與x軸、y軸的不行線與OA、OB分別交于M、N兩點,過M作OB邊的垂線與OB交于H;你有什么發(fā)現(xiàn)?請寫出來,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇鹽城鹽都區(qū)九年級下學期期中質量檢測數(shù)學試卷(解析版). 題型:解答題

問題提出

我們在分析解決某些數(shù)學問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.

問題解決

如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大小.

解:由圖可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

類比應用

1.已知:多項式M =2a2-a+1 ,N =a2-2a .試比較M與N的大小.

2.已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊

滿足a <b < c ,現(xiàn)將△ABC 補成長方形,使得△ABC的兩個頂

點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上。                     

      ①這樣的長方形可以畫        個;

②所畫的長方形中哪個周長最?為什么?

拓展延伸                                                                                                                               

     已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

 

 

查看答案和解析>>

同步練習冊答案