【題目】先化簡,再求值:(1)(2x+y)2+(x-y)(x+y)-5x(x-y),其中x=+1,y=-1.
(2)[(x+2y)2-(x+y)(3x-5y)-5y2]÷2x,其中x=-2,y=.
【答案】(1) 9xy ,9;(2) -x+3y+,
【解析】
(1)原式根據(jù)完全平方公式、平方差公式、單項(xiàng)式乘以多項(xiàng)式法則進(jìn)行計(jì)算,去括號(hào)合并得到最簡結(jié)果,將x與y的值代入計(jì)算即可求出值.
(2)原式先在中括號(hào)內(nèi)根據(jù)完全平方公式、多項(xiàng)式乘以多項(xiàng)式法則進(jìn)行計(jì)算,然后再進(jìn)行除法運(yùn)算,得到最簡結(jié)果,將x與y的值代入計(jì)算即可求出值.
解:(1)原式=4x2+4xy+y2+x2-y2-5x2+5xy
=4x2 +x2 -5x2+5xy+4xy+y2-y2
=9xy
當(dāng)x=+1,y=-1時(shí),
原式=9(+1)(-1)=9
(2)原式=(x2+4xy+4y2-3x2+2xy+5y2-5y2)÷2x
=(-2x2+6xy+4y2)÷2x
=-x+3y+
當(dāng)x=-2,y= 時(shí),
原式=2+-=3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位籃球運(yùn)動(dòng)員在距離籃圈中心水平距離4m處起跳投籃,球沿一條拋物線運(yùn)動(dòng),當(dāng)球運(yùn)動(dòng)的水平距離為2.5m時(shí),達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃框內(nèi).已知籃圈中心距離地面高度為3.05m,在如圖所示的平面直角坐標(biāo)系中,下列說法正確的是( 。
A. 此拋物線的解析式是y=﹣x2+3.5
B. 籃圈中心的坐標(biāo)是(4,3.05)
C. 此拋物線的頂點(diǎn)坐標(biāo)是(3.5,0)
D. 籃球出手時(shí)離地面的高度是2m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>△ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.
中線AD的取值范圍是 ;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以為頂點(diǎn)作一個(gè)70°角,角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)從點(diǎn)出發(fā)沿邊向以的速度移動(dòng),點(diǎn)從點(diǎn)出發(fā)沿向點(diǎn)以的速度移動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)兩個(gè)點(diǎn)同時(shí)停止運(yùn)動(dòng),在兩個(gè)點(diǎn)運(yùn)動(dòng)過程中,請回答:
經(jīng)過多少時(shí)間,的面積是?
請你利用配方法,求出經(jīng)過多少時(shí)間,四邊形面積最小?并求出這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算:
(2)如圖,在矩形 ABCD 中,AE 平分∠BAD,交 BC 于點(diǎn) E,過點(diǎn) E 作 EF⊥AD 于點(diǎn) F,求證:四邊形ABEF 是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),按C→B→A的路徑,以2cm每秒的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=1時(shí),求△ACP的面積.
(2)t為何值時(shí),線段AP是∠CAB的平分線?
(3)請利用備用圖2繼續(xù)探索:當(dāng)t為何值時(shí),△ACP是以AC為腰的等腰三角形?(直接寫出結(jié)論)
(4)當(dāng)p點(diǎn)在AB上運(yùn)動(dòng)時(shí),線段CP值為整數(shù)的點(diǎn)有_______________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個(gè)衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運(yùn)送,兩車各運(yùn)12趟可完成,需支付運(yùn)費(fèi)4800元.已知甲、乙兩車單獨(dú)運(yùn)完此堆垃圾,乙車所運(yùn)趟數(shù)是甲車的2倍,且乙車每趟運(yùn)費(fèi)比甲車少200元.
(1)求甲、乙兩車單獨(dú)運(yùn)完此堆垃圾各需運(yùn)多少趟?
(2)若單獨(dú)租用一臺(tái)車,租用哪臺(tái)車合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)共有三個(gè)班,都參加了學(xué)校舉行的書法繪畫大賽,三個(gè)班根據(jù)初賽成績分別選出了10名同學(xué)參加決賽(滿分100分),如下表所示:
解答下列問題:
(1)請?zhí)顚懴卤恚?/span>
(2)請從以下兩個(gè)不同的角度對三個(gè)班級(jí)的決賽成績進(jìn)行
①從平均數(shù)和眾數(shù)相結(jié)合看(分析哪個(gè)班級(jí)成績好);
②從平均數(shù)和中位數(shù)相結(jié)合看(分析哪個(gè)班級(jí)成績好);
(3)如果在每個(gè)班級(jí)參加決賽的選手中選出3人參加總決賽,你認(rèn)為哪個(gè)班級(jí)的實(shí)力更強(qiáng)一些,請簡要說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com