【題目】一位籃球運(yùn)動員在距離籃圈中心水平距離4m處起跳投籃,球沿一條拋物線運(yùn)動,當(dāng)球運(yùn)動的水平距離為2.5m時,達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃框內(nèi).已知籃圈中心距離地面高度為3.05m,在如圖所示的平面直角坐標(biāo)系中,下列說法正確的是( 。
A. 此拋物線的解析式是y=﹣x2+3.5
B. 籃圈中心的坐標(biāo)是(4,3.05)
C. 此拋物線的頂點(diǎn)坐標(biāo)是(3.5,0)
D. 籃球出手時離地面的高度是2m
【答案】A
【解析】
A、設(shè)拋物線的表達(dá)式為y=ax2+3.5,依題意可知圖象經(jīng)過的坐標(biāo),由此可得a的值;B、根據(jù)函數(shù)圖象判斷;C、根據(jù)函數(shù)圖象判斷;D、設(shè)這次跳投時,球出手處離地面hm,因?yàn)椋?/span>1)中求得y=﹣0.2x2+3.5,當(dāng)x=﹣2,5時,即可求得結(jié)論.
解:A、∵拋物線的頂點(diǎn)坐標(biāo)為(0,3.5),
∴可設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+3.5.
∵籃圈中心(1.5,3.05)在拋物線上,將它的坐標(biāo)代入上式,得 3.05=a×1.52+3.5,
∴a=﹣,
∴y=﹣x2+3.5.
故本選項(xiàng)正確;
B、由圖示知,籃圈中心的坐標(biāo)是(1.5,3.05),
故本選項(xiàng)錯誤;
C、由圖示知,此拋物線的頂點(diǎn)坐標(biāo)是(0,3.5),
故本選項(xiàng)錯誤;
D、設(shè)這次跳投時,球出手處離地面hm,
因?yàn)椋?/span>1)中求得y=﹣0.2x2+3.5,
∴當(dāng)x=﹣2.5時,
h=﹣0.2×(﹣2.5)2+3.5=2.25m.
∴這次跳投時,球出手處離地面2.25m.
故本選項(xiàng)錯誤.
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P為x軸正半軸上的一個點(diǎn),過點(diǎn)P作x軸的垂線,交函數(shù)的圖象于點(diǎn)A,交函數(shù)的圖象于點(diǎn)B,過點(diǎn)B作x軸的平行線,交于點(diǎn)C,邊接AC.
(1)當(dāng)點(diǎn)P的坐標(biāo)為(1,0)時,求△ABC的面積;
(2)當(dāng)點(diǎn)P的坐標(biāo)為(1,0)時,在y軸上是否存在一點(diǎn)Q,使A、O、Q三點(diǎn)為頂點(diǎn)的三角形△QAO為等腰三角形?若存在,請直接寫出Q點(diǎn)的坐標(biāo);若不存在,說明理由.
(3)請你連接OA和OC.當(dāng)點(diǎn)P的坐標(biāo)為(t,0)時,△OAC的面積是否隨t的值的變化而變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,,若點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿折線運(yùn)動,設(shè)運(yùn)動時間為秒.
備用圖
(1)___________;
(2)若點(diǎn)恰好在的角平分線上,求此時的值:
(3)在運(yùn)動過程中,當(dāng)為何值時,為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,點(diǎn)D、E分別是AB、AC上一點(diǎn),且AD=AE,∠ABE=∠ACD,BE與CD相交于點(diǎn)F.試判斷△BCF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點(diǎn)A(,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對稱軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:我們都知道,
于是,-2x2+40x+5
=-2(x2-20x)+5
=-2(x2-20x+100)+200+5
=-2(x-10)2+205
又因?yàn)?/span>,所以,
所以,-2x2+40x+5有最大值205.
如圖,某農(nóng)戶準(zhǔn)備用長34米的鐵柵欄圍成一邊靠墻的長方形羊圈ABCD和一個邊長為1米的正方形狗屋CEFG.設(shè)AB=x米.
(1)請用含x的代數(shù)式表示BC的長(直接寫答案);
(2)設(shè)山羊活動范圍即圖中陰影部分的面積為S,試用含x的代數(shù)式表示S,并計(jì)算當(dāng)x=5時S的值;
(3)試求出山羊活動范圍面積S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com